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Preface

Thermal physics is a beautiful subject that is rooted in the real world but has 
strong connections to other basic areas of physics—classical dynamics, elec-
tromagnetism, and quantum theory—as well as to the disciplines of chemistry 
and engineering. Everyone has a sense of what happens when they put ice into 
a drink or open the front door on a cold day. However, the subject is full of 
subtleties that only emerge upon deeper study. I have found that generally stu-
dents are happy and grateful to see these, to build on their experience-based 
intuition, and to gain the expertise that enables them to solve more challeng-
ing problems.

Given the beauty and importance of this subject, I was delighted when Luna 
Han, my editor at Taylor & Francis, asked me to consider working on a revi-
sion of Finn’s Thermal Physics. Moreover, on a personal level, this project 
dovetails with my own interests and expertise in statistical mechanics. I first 
encountered the Maxwell’s demon problem over 30 years ago, when teaching 
the brief section on statistical mechanics in a modern physics course (second-
year undergraduates). One day, about 15 minutes before class, I thought that I 
might quote Maxwell’s original conception and then explain why a Maxwell’s 
demon can’t work. Needless to say, I was unable to come up with the explana-
tion in that timeframe. Here we are now, over 30 years later, and there are still 
new demons and other challenges to the second law being invented with some 
regularity. The second law invites such challenges because in its statistical for-
mulation it expresses only strong probabilities, not certainties. (This is just one 
of those subtleties I mentioned above!) My own thinking is that no such chal-
lenge has yet proved sufficient, and to further the discussion I like to challenge 
people to give me a computer that I can plug into my bathtub. I also remind 
people what was said on the subject by Arthur Eddington in 1935:

The law that entropy always increases—the second law of thermodynamics—

holds, I think, the supreme position among the laws of Nature. If someone points 

out to you that your pet theory of the universe is in disagreement with Maxwell’s 

equations—then so much the worse for Maxwell’s equations. If it is found to 

be contradicted by observation, well, these experimentalists do bungle things 

sometimes. But if your theory is found to be against the second law of thermody-

namics I can give you no hope; there is nothing for it but to collapse in deepest 

humiliation.
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Obviously, even today this is somewhat contentious.

In embarking on this revision, I had as a starting point an outstanding text in 
the second edition of Finn’s Thermal Physics. The literature is full of positive 
user reviews, and there are many loyal users of this book. Thus, my greatest 
challenge has been to add what I could to an already excellent resource with-
out diminishing the effectiveness of the core material. I expect those famil-
iar with Finn’s second edition to find much of this book, even most of it, quite 
recognizable.

One notable feature of Finn’s book is that it presented such a complete pic-
ture of thermodynamics with a fairly minimal inclusion of the approach to 
the subject via statistical mechanics. However, this is just where I felt a major 
enhancement was in order. The third edition offers two brand-new chapters: 
Chapter 6 devoted to classical statistics and Chapter 13 introducing quantum 
statistics. These additions are not only useful to the student, but it is also beau-
tiful to see how classical thermodynamics and statistical mechanics lead to 
identical results. At the same time, the new chapters and those in between are 
designed so anyone who wishes to can skip over some or all of the new mate-
rial without loss of continuity.

Another enhancement in the third edition is in the problem sets, which are 
now placed more prominently and traditionally at the end of each chapter 
rather than in an appendix. I have augmented the problems, not only in the 
new chapters (6 and 13) but also by adding problems to every chapter, in some 
cases roughly doubling the size of the problem set. Many of the new problems 
are “battle-tested” in my own classes or exams. Whenever possible, I have 
focused on added problems that present practical outcomes and require com-
putation. Similarly, I have added some examples throughout the main narra-
tive as a way of illustrating the theory already so well presented by Finn.

No project of this magnitude is the work of a single individual, and I have many 
people to thank for their contributions to the third edition. Luna Han has been 
a supportive and resourceful editor at every stage. Several reviewers contrib-
uted a number of useful comments regarding the project as a whole and then 
specifically on drafts of the new material, including Carl Michal (University 
of British Columbia), Yoonseok Lee (University of Florida), Kevin Donovan 
(Queen Mary University of London), John Dutcher (University of Guelph), and 
Steven Bramwell (University College London). In a more global sense, it has 
been my privilege to work with many colleagues who inspired and enriched 
my work in thermal and statistical physics. First among these is Harvey Leff 
(Cal State Poly University, Pomona), my longtime friend and colleague with 
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whom I coauthored two books and several articles. I also want to recognize 
the work of Daniel Sheehan (University of San Diego), who has organized and 
hosted a number of important conferences on challenges to the second law. 
Over the years I have been fortunate to have many great colleagues here at 
the University of Puget Sound who have enhanced my understanding of this 
and other subjects. These include Jim Clifford, Fred Slee, Frank Danes, Alan 
Thorndike, Jim Evans, Greg Elliott, Bernie Bates, Amy Spivey, Randy Worland, 
Tsunefumi Tanaka, David Latimer, and Rachel Pepper. Then there are the stu-
dents here at Puget Sound whose intelligence and enthusiasm has made me 
the best possible teacher and writer. Finally, I have enjoyed the constant sup-
port of my family, particularly my wife, Sharon. She has never failed to encour-
age my work and has often reminded me of its importance in the world.

Andrew Rex
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Introduction

THE IMPORTANCE OF THERMODYNAMICS

The science of thermodynamics was developed in the nineteenth century 
mainly out of an interest in heat engines—the steam engine and the inter-
nal combustion engine. It concerns itself with the relationships between the 
large-scale bulk properties of a system that are measurable, such as volume, 
temperature, pressure, elastic moduli, and specific heat. These are often called 
macroscopic properties. Thus, thermodynamics belongs to classical physics.

Modern physics, on the other hand, attempts to explain the behavior of matter 
from a microscopic or atomic viewpoint using the techniques of quantum and 
statistical mechanics. You might ask, then, why we bother with this classical 
subject of thermodynamics.

The answer is that the modern physics approach of quantum and statistical 
mechanics depends for its accuracy on the correctness of the microscopic 
model chosen to represent the physical system. By a microscopic model we 
mean a simplified picture of the system consisting of a collection of small 
atomic-sized particles. For example, a possible model of a crystal of common 
salt could be a collection of sodium and chlorine ions alternately placed at the 
corners of a stack of cubes, the forces between the ions being represented by 
springs. The accuracy of these models is often dubious, as must be any calcula-
tions based on them. Thermodynamics, on the other hand, is not dependent 
on any such microscopic model and it is important for that very reason. The 
results of quantum mechanics and statistical mechanics, when scaled up to 
macroscopic proportions, have to give results consistent with thermodynam-
ics, and so we have an important check on our microscopic picture. However, 
thermodynamics by itself can give us no fine microscopic details: it can tell us 
only about the bulk properties of a system.
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Classical thermodynamics, then, has a relevance within the framework of 
modern physics and is as important today as it ever was. This point was brought 
home by Einstein who in 1949 said:

A theory is the more impressive the greater the simplicity of its premises, the 

more varied the kinds of things that it relates and the more extended the area of 

its applicability. Therefore, classical thermodynamics has made a deep impres-

sion upon me. It is the only physical theory of universal content which I am con-

vinced, within the areas of the applicability of its basic concepts, will never be 

overthrown.

C. B. P. Finn
Second Edition

1993
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Chapter 1: Temperature

The concept of temperature is fundamental to any study of thermodynamics. 
You have an intuitive sense of temperature, because you can feel if an object is 
hot or cold. However, like some other fundamental quantities in physics (think 
for example of time or electric charge), it is not easy to give a precise definition 
of temperature. To do so, it is necessary to define some other basic concepts 
and introduce the so-called “zeroth law of thermodynamics,” which leads to 
the definition of thermal equilibrium; from this, temperature can be defined 
in an unambiguous way.

1.1  BASIC CONCEPTS

In thermodynamics, attention is focused on a particular part of the universe, 
simply defined as the system. The rest of the universe outside the system is 
called the surroundings. The system and the surroundings are separated by 
a boundary or partition and they may, in general, exchange energy and mat-
ter, depending on the nature of the partition. For now consider the exchange 
of energy only, which makes for a closed system, so that there is no matter 
exchange between system and surroundings.

1.1.1  A system, its walls and surroundings

A useful example of a system is a fixed mass of compressible fluid, such as a 
gas, contained in a cylinder with a moveable piston as shown in Figure 1-1. 
This simple system serves as a model for developing some important ideas in 
thermodynamics.

First consider a system that is completely isolated from its surroundings. 
The  degree of isolation from external influences can vary over a very wide 
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range, and it is possible to imagine walls that make the isolation complete. In 
practice, the rigid walls of an ordinary vacuum flask are a good approximation 
to completely isolating walls. It is an important fact of experience that, after a 
time, this gas system, or any other system contained in such isolating walls, 
tends to an equilibrium state in which no further changes occur. In particular, 
the pressure P becomes uniform throughout the gas and remains constant in 
time, as does the volume V. We say that the gas is in the equilibrium state (P, V). 
It is a further fact of experience that, specifying these equilibrium values of the 
pair of independent variables P and V, together with the mass, fixes all the 
macroscopic or bulk properties of the gas—for example, the thermal conduc-
tivity and the viscosity. A second sample of the same amount of gas with the 
same equilibrium values for P and V, but not necessarily of the same shape, 
would have the same viscosity as the first. These ideas can be generalized into 
the following definition:

Later you will see that there are other simple thermodynamic systems, apart 
from a gas, where it is necessary to use other pairs of independent variables 
to specify the equilibrium state. For a stretched wire system, for example, the 
appropriate pair is the tension F and length L. Other examples will arise in 
Section 1.2.3. The important point is that two variables are required to specify 
the equilibrium state of a simple system. Such directly measurable variables 
are called state variables. Other common names are thermodynamic variables 
and thermodynamic coordinates.

An equilibrium state is one in which all the bulk physical properties 
of the system are uniform throughout the system and do not change 
with time.

Wall

Moveable piston

Surroundings

Gas system

Figure 1-1  A gas contained in a cylinder is a useful example of a system.
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1.1.2  State functions (properties)

The basic state variables P, V, and temperature T are used to define other func-
tions, which take unique values at each equilibrium state. Some examples of 
such functions are the internal energy, the entropy, and the enthalpy. They are 
examples of state functions. It is important to realize that it does not matter 
how a particular state was reached; the value of a state function is always the 
same for a system in a given state and in no way depends on its past history. 
State property is an alternative and perhaps a more appropriate name for state 
function. It will be shown in Section 1.3 that P, V, and T are functionally con-
nected at each equilibrium state by the equation of state, and therefore it is 
possible to express any one in terms of the other two. Thus these quantities are 
themselves state functions, but we give them the additional name of state vari-
ables because they are easily measured and allow us to specify an equilibrium 
state in a convenient, practical way.

1.1.3  Adiathermal (adiabatic) and diathermal walls

There are different ways to change the pressure or volume of a gas system. 
For example, the piston in Figure 1-1 can be pushed in (to the left). This is an 
example of a mechanical interaction between the system and the surround-
ings. Pushing the piston in clearly reduces the volume, and in the process the 
gas’s pressure is likely to change too.

Suppose now that no mechanical interaction is allowed to occur—as would be 
the case if the piston were clamped, with the walls now being rigid, so that the 
gas’s volume is constant. Consider a second cylinder, fitted with a free piston, 
containing the same gas with the same mass, volume, and pressure as the first. 
Let the two cylinders be put into contact, as shown in Figure 1-2, and let the 

Isolating wall

Gas system of interest
contained in a rigid cylinder

Second identical gas but contained in
a cylinder fitted with a moveable piston

Rigid intervening wall

Figure 1-2  An arrangement for determining whether or not a wall is adiabatic.
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piston of the second cylinder be pushed in. Depending on the nature of the 
intervening wall between the cylinders, there may or may not be changes in 
the pressure of the gas system in the first cylinder. If there is no change, the 
intervening wall is said to be adiathermal or, more commonly, adiabatic; if 
there is a change, the wall is said to be diathermal, and a thermal interaction 
has taken place. A wall made of metal such as copper or aluminum is a good 
approximation to a diathermal wall, while a good realization of an adiabatic 
wall is that of a vacuum flask. Two systems in contact via a diathermal wall are 
said to be in thermal contact.

A remark should be made at this point. The reader may wonder why diather-
mal and adiabatic walls are not defined according to whether or not they con-
duct heat. The answer is that while such walls have those properties, we cannot 
address the issue in this way until heat is defined in Chapter 3.

1.2  EQUILIBRIUM STATE

If two thermodynamic systems such as gases are put into thermal contact, 
after a time no further changes in the pressures and volumes will occur. 
When the gases’ pressures and volumes are no longer changing, each gas is 
then considered to be in an equilibrium state, and the gases are said to be 
in thermal equilibrium with each other, thereby leading to the definition of 
temperature.

1.2.1 � Thermal equilibrium and the zeroth 
law of thermodynamics

Consider the arrangement shown in Figure 1-3, which includes the sys-
tems A, B, and C. Each of the three is in an equilibrium state, meaning (as 
defined above) that the state variables have assumed constant and uniform 
values. Suppose now that the states of the systems are such that, when A 
and B are brought together in thermal contact, thermal equilibrium exists 
in that no changes occur in the variables. Also suppose that the same is 
true for the systems A and C. It is an experimental observation that B and C 
would also be in thermal equilibrium if they were similarly brought together. 
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By generalizing the observation above, we arrive at the statement of the zeroth 
law of thermodynamics:

1.2.2  Temperature

The preceding experimental observation is the basis of the concept of temper-
ature. It follows from the zeroth law that a whole series of systems could be 
found that would be in thermal equilibrium with each other were they to be 
put in thermal contact—a fourth system, D, which is in thermal equilibrium 
with system C would also be in thermal equilibrium with A and B, and so on. 
All the systems possess a common property called the temperature, T.

More formal mathematical arguments may be developed to show the exis-
tence of temperature, but they will not be presented here (see, e.g., Adkins 
1984; Zemansky and Dittman 1997).

The temperature of a system is a property that determines whether 
or not that system is in thermal equilibrium with other systems. 
Systems in thermal equilibrium with one another have the same 
temperature T.

If each of two systems is in thermal equilibrium with a third, they are 
in thermal equilibrium with one another.

Adiabatic wall
Diathermal wall

A B C

CAA B

Figure 1-3  An illustration of the zeroth law of thermodynamics. If A and B are in thermal 
equilibrium upon contact, as are A and C, then so are B and C.
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1.2.3  Thermodynamic equilibrium

If two systems have the same temperature so that they are in thermal equilib-
rium, this does not necessarily mean that they are in complete or thermody-
namic equilibrium. For this condition to hold, in addition to being in thermal 
equilibrium, they also have to be in

	 1.	 Mechanical equilibrium, with no unbalanced forces acting.
	 2.	 Chemical equilibrium, with no chemical reactions occurring.
	 3.	 Diffusive equilibrium, with no flow of matter from one system to another.

Much of thermodynamics concerns the changes that occur to both systems 
when one or more of these three kinds of equilibrium do not exist. In later 
chapters they will each be considered in turn.

1.2.4  Isotherms

Consider again the gas system contained in a cylinder with a moveable piston, 
as in Figure 1-1. Suppose that the gas in the equilibrium state (P, V) and is in 
thermal equilibrium with another reference system that surrounds the cylinder, 
so that the two systems have the same temperature. This state can be plotted as 
a point on a pressure versus volume plot, which is called an indicator diagram 
or PV diagram.

Let the gas system be separated from the reference system. If the piston is now 
pushed in to take the gas to a new state (P′, V′), and if this new state is also 

P

T1

T2

T3

V

Figure 1-4  The isotherms for an ideal gas. They form a family of hyperbolae.
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in thermal equilibrium with the unchanged reference system, then by the 
zeroth law the two states (P, V) and (P′, V′) are themselves in thermal equi-
librium and have the same temperature. This really means that two identical 
systems in the states (P, V) and (P′, V′) would be in thermal equilibrium. The 
locus of all such points with the same temperature is called an isotherm. The 
isotherms for an ideal gas, to be discussed in the following section, are shown 
in Figure 1-4.

1.3  EQUATIONS OF STATE

You have seen that all the bulk physical properties of a system in an equilib-
rium state are fixed by specifying two independent state variables, and these 
properties must include the temperature. For a gas this implies that there is a 
functional relationship between P, V, and T:

f P V T( , , ) = 0

Such a relation is called an equation of state. It shows that, of the three directly 
measurable variables, P, V, and T, only two are independent and any one may 
be expressed in terms of the other two. The state of the gas is equally well speci-
fied by quoting (P, V), (P, T), or (V, T).

As an example of an equation of state, consider an ideal gas (where there are 
no intermolecular attractions and the molecules themselves have no volume) 
where the equation of state is determined empirically to be

PV nRT=

Here n is the number of moles present and R is a constant called the universal 
gas constant, with approximate value R = 8.315 J/(mol ⋅ K). It follows from this 
equation of state that the isotherms for an ideal gas shown in Figure 1-4 are a 
family of hyperbolae, following the equation

P nRT V= /

Equations of state for systems other than a gas are presented later in this 
book.
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1.4  SCALES OF TEMPERATURE

From the discussion to this point, it might seem that temperature is a fairly 
abstract quantity that would be difficult to measure, perhaps requiring a sys-
tem of cylinders and pistons with one or more reference systems. However, 
from an early age people develop an intuitive sense of temperatures, warmer 
or colder, and later learn to associate them with specific numbers. Those num-
bers appear on thermometers, which are ubiquitous in modern cultures and 
normally (in the twenty-first century) come with digital displays. For example, 
you know that 30°C (or 86°F) is a warm day, while 0°C (or 32°F) is a cold day. You 
know that your body temperature should be close to 37°C (or 98.6°F).

1.4.1  Absolute thermodynamic temperature scale

In order to give numerical values to different temperatures, a systematic and 
reproducible method for assigning such values is required. The first task is 
to choose a system and then to select a physical property of that system (the 
thermometric variable or thermometric property) that varies with tempera-
ture. In order to make the argument general, the thermometric variable will 
be labeled X.

The normal choice of X is something that can easily be measured, such as the 
length of the column of mercury in a mercury-in-glass thermometer or the 
resistance of a piece of platinum wire. Unfortunately, scales of temperature 
defined using different but familiar thermometric variables do not on the 
whole agree throughout a wide range of temperatures, although in practice 
the differences are small. This point will be addressed in more detail later.

The general thermometric variable X is used to set up a scale of temperature. 
Call TX the temperature on the X scale, where the subscript X is a reminder 
that the temperature depends on the thermometric property chosen. 
The numerical value of temperature on this scale is defined so that the ther-
mometric property X varies with temperature in the simplest possible way, 
according to the linear relation

	 X cTX= 	 (1.1)

where c is a constant. The value of c is fixed by choosing an easily reproducible 
TX (a fixed point) and assigning to it a particular value. The customarily chosen 
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fixed point is the temperature at which ice, water, and water vapor coexist in 
equilibrium; this is known as the triple point of water. The value given to TX 
at this fixed point is 273.16—the choice of the value 273.16 will be discussed 
shortly. Substituting this value for the temperature of the triple point, where 
the value of X is XTP , in Equation 1.1 gives

	 T X XX TP= 273 16( / ). 	 (1.2)

There are two issues here that deserve discussion

	 1.	E quation 1.2 implies a zero of temperature on the X scale, that is, TX = 0, 
when X = 0. In practice, such a TX may not occur if the thermometric 
variable does not vanish as the temperature is progressively lowered. 
For example, the resistance of a length of platinum wire always remains 
nonzero, becoming nonlinear and tending to a constant value at the low-
est attainable temperatures. The ideal gas scale, to be discussed below, 
does have a meaningful zero of temperature because the thermometric 
property used there, the pressure, eventually vanishes as the tempera-
ture is extrapolated to zero.

	 2.	 Temperatures on the X scale are defined only in regions where Equation 
1.2 is meaningful. If, for example, you are using a mercury-in-glass ther-
mometer with X being the length of the column, this equation gives a 
temperature only as long as there is a measurable length of mercury in 
the capillary. At low temperatures, when the mercury has dropped back 
into the bulb, Equation 1.2 has no relevance. This is one reason why, in 
practice, the mercury-in-glass scale defined according to Equation 1.2, 
is not used, even though in principle such a scale is possible. Instead, 
these thermometers are calibrated in terms of other standard ones such 
as those described in Section 1.4.5.

Note that before 1954 temperature scales were based on the modified 
relation

	 X cT dX= + 	 (1.3)

Then the two constants c and d had to be fixed by specifying the tem-
perature at two fixed points, the steam and the ice points, which are the 
temperatures of boiling and freezing water at 1 atm pressure. Since 1954 
Equation 1.2 has been used, requiring only one fixed point. See Section 
1.4.5 for further discussion of this point.
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1.4.2  Limitations of the thermodynamic scale

It is important to realize that different thermometers based on different ther-
mometric variables will agree by definition only at fixed points. At other tem-
peratures a mercury-in-glass thermometer will give slightly different values for 
a particular temperature than, say, a resistance thermometer, which correlates 
the resistance of the detection element (such as platinum, nickel, or copper) 
with temperature. The resistance of any metal or alloy does not vary in a linear 
way with temperature, and the amount of deviation from linearity depends 
on the temperature range being considered. Therefore, the linear relationship 
expressed in Equation 1.1 is only an approximation. If the mercury scale and 
the resistance scale were truly linear, as is suggested by Equation 1.1, then the 
two scales would agree at all points. However, each of the two thermometers 
will in practice vary from the linear relationship in different ways. Therefore, 
as the temperature on any thermometer deviates more from its fixed point, a 
larger deviation from linearity might be expected. Problem 1.6 at the end of 
this chapter illustrates this point.

Fortunately, there is a class of thermometers that always agree at all points on 
the temperature scale—the gas thermometers. It will be shown in Chapter 4 
that temperature defined according to the ideal gas scale has a fundamental 
significance in thermodynamics and in fact is identical to the temperature T 
on the absolute thermodynamic temperature scale. The development of all our 
thermodynamic relations will be in terms of T, with the understanding that it 
can be measured experimentally using a gas thermometer.

1.4.3  The gas scale

A schematic diagram of a constant-volume gas thermometer is shown in 
Figure 1-5. The volume of the gas is kept constant by adjusting the height of 
the mercury column until the mercury meniscus just touches the marker at 
the end of the capillary tube. The bulb of gas is immersed in a system whose 
temperature is to be measured, and the pressure of the gas is used as the ther-
mometric parameter. Allowance has to be made for the fact that some of the 
gas in the “dead space” may be at a different temperature from that in the bulb. 
When this and other corrections (not discussed here) have been made, the gas 
scale temperature is determined from

	 T P PTPgas 273 16( / )= . 	 (1.4)
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The number 273.16 in Equation 1.4 is taken to be exact, not rounded. The inter-
esting point is that, when the amount of working gas is reduced as small as 
possible for measurements still to be made, all gas thermometers give the 
same temperature for a given system, irrespective of the gas used. Figure 1-6 
illustrates this point for the temperature of water boiling under an external 
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manometer
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Dead space (capillary)
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Figure 1-5  A constant-volume gas thermometer.
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pressure of 1 atm, where the limiting value is 373.15. The ordinate in this figure 
(triple point pressure) is directly related to the amount of gas used because, as 
the amount of gas is reduced, the corresponding pressure at the triple point is 
also reduced.

To summarize these findings, the ideal gas scale is defined as

The SI unit for absolute temperature is kelvin (symbol K). Notice that no ° 
sign is written before K, as it is with other temperature units such as °C and 
°F. The connection with an ideal gas is that, as the amount of working gas is 
reduced, the gas becomes closer to an ideal one, as both the intermolecular 
attraction and the molecular density are reduced.

The apparently curious choice of 273.16 K for the temperature of the fixed 
point can now be understood. This value was chosen to make the size of the 
kelvin  such that there would be exactly 100 K between the experimentally 
determined temperatures of the ice and steam points on the ideal gas scale. 
To the accuracy then available, these temperatures were measured to be 
273.15 and 373.15 K, respectively. The reader should note the 0.01 K difference 
between the ice and triple points.

Finally, it should be remarked that the ideal gas scale can equally be defined 
using constant-pressure thermometers rather than constant-volume ther-
mometers. In practice, only the constant-volume type is used, which justifies 
the focus of this section.

	
T P P

P
TP

TP

= ( )
→

273 16
0

. lim /
	

(1.5)

Actually, much to the embarrassment of those who chose the value of 
273.16 K for the temperature of the single fixed point, modern measure-
ments have shown that the ice and the steam points differ by slightly less 
than 100 K! These measurements give a slightly lower value for the steam 
point at 373.124 ± 0.001 K, so the steam and the ice points differ by only 
99.974 ± 0.001 K rather than the intended 100 K. (See, e.g., Pellicer et al. 
1999.) This difference is important only for precision work and in general 
we shall ignore it, noting simply that it exists.
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1.4.4 � The celsius scale and the international 
temperature scale of 1990

For convenience, it would be desirable to have a temperature scale in which 
the zero is in the range of commonly encountered temperatures. The Celsius 
scale t is measured in °C and is related to the ideal gas scale T by

	 t T( ) ( ) .° = −C K 273 15 	 (1.6)

with the size of the °C the same as the kelvin. It follows from the defining 
Equation 1.6 that, ignoring the small recently measured difference from the 
experimental value of 373.15 K for the steam point as noted in the previous 
section, the ice point is at 0°C and the steam point is at 100°C. By definition, the 
temperature of the fixed point, the triple point of water, is 0.01°C (= 273.16 K).

Because gas thermometers are cumbersome devices to use, it is convenient to 
calibrate a whole series of secondary thermometers in terms of the gas scale 
and to use these where possible. The most recent International Temperature 
Scale of 1990 (ITS-90) extends upward from 0.65 K to the highest tempera-
ture practically measurable in terms of the Planck radiation law using mono-
chromatic radiation. It uses, for example, a platinum resistance thermometer 
between 14 and 962 K, calibrated at a specified set of fixed points and using a 
specified interpolation procedure for intermediate temperatures. Below 14 K, 
a helium gas thermometer is used, except at the lowest temperatures where the 
temperature is determined from the vapor pressure–temperature relations for 
3He and 4He.

1.4.5  Single-point temperature scale

In Section 1.4.1, it was noted that the method of setting the temperature scale 
was changed in 1954 from a two-point method to the current single-point 
method. In the old centigrade scale (as Celsius was called prior to its renam-
ing in the 9th General Conference of Weights and Measures in 1948), the 
temperature of the upper fixed steam point was chosen to be 100° centigrade 
while that of the ice point 0° centigrade. Thus, there should be 100° centigrade 
difference between these two points for any thermometric variable X by defini-
tion—hence the name centigrade. Contrast this with the Celsius scale, defined 
by Equation 1.6 and set up using a gas thermometer only, where this difference 
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is 100° Celsius by experimental measurement. It follows from Equation 1.3 
that, if Xsteam and Xice are the values of the thermometric variable at the steam 
and ice points,

X c d X dsteam ice1= + =00

Substituting the values of the constants c and d obtained from these equa-
tions back into Equation 1.3, the centigrade value of the temperature is

	
θx

X X
X X

( )° = −
−







centigrade ice

steam ice

100
	

(1.7)

at a general point where the thermometric variable is X. The symbol θx is used 
here to denote the temperature in degrees centigrade, whereas we have used 
the symbol t earlier to denote the temperature in degrees Celsius. The subscript 
x on θ is to remind us that, other than at the two fixed points, the centigrade 
temperature depends on the choice of the thermometric variable. More strictly, 
one should quote for example a temperature as 20° centigrade (measured on 
the mercury-in-glass scale) with the words in parentheses added. Note that 
units ° centigrade are used here, so as to reserve the symbol °C for degrees 
Celsius.

Suppose the centigrade scale is set up using a gas thermometer, with the 
results extrapolated to having a vanishingly small amount of gas in the bulb, 
thus simulating an ideal gas thermometer as in Equation 1.5. Then this gas 
centigrade scale coincides with the Celsius scale (providing one takes there to 
be 100 measured kelvins between the steam and ice points and not the more 
accurate value of 99.974 K as discussed in Section 1.4.3). However, it must be 
remembered that the two scales are different in principle: in the centigrade 
scale the steam and the ice points are defined to differ by 100° centigrade; in 
the Celsius scale they are measured to differ by 100 K, which is the same as 
100°C. For precision work the two scales have to be taken as numerically differ-
ent, with the degree centigrade being slightly smaller than the degree Celsius 
(100° centigrade as opposed to 99.974° Celsius between the ice and the steam 
points). You may have heard that Celsius is just a new name for centigrade. This 
is true only for a gas thermometer within the limitations just discussed. For 
other thermometers, for example a mercury thermometer, this statement is 
untrue because the Celsius scale is defined only for a gas thermometer accord-
ing to Equation 1.6 and has no meaning for other types of thermometers. Such 
thermometers may, however, read °C if they have been calibrated against an 
ideal gas thermometer giving °C directly.
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Although there are differences between centigrade thermometers using differ-
ent thermometric variables, the differences are smaller than with the current 
method utilizing a single fixed point, where you have seen that differences can 
be quite marked. This does not mean that the current method is inferior to 
the old method, because these differences are of no importance in practice; 
all real thermometers are calibrated against the ideal gas scale. The modern 
method has the enormous advantage of requiring only one fixed point, which 
halves the problem of standardization between different laboratories.

Also, the old method suffered from the severe disadvantage that, any uncer-
tainty in the experimental measurement of the thermometric variable X at 
the two fixed points gives rise to a proportionately larger error when these 
measurements are extrapolated back to low temperatures. To understand this 
last point, consider the application of Equation 1.7 to a constant-volume gas 
thermometer with the pressure P as the thermometric variable:

	
θ =

−
−









°100

P P

P P
ice

steam ice

centigrade
	

(1.8)

It is necessary to measure experimentally the values of Psteam and Pice at the 
steam and ice points which are defined as 100° centigrade and 0° centigrade. 
The results would be as on the left of Figure 1-7.

There are particular difficulties with setting up the ice point (ice coexisting 
with water-saturated air at 1 atm) in a reproducible way. One problem is that, as 
the ice melts, it tends to surround itself with pure water, insulating it from the 
water-saturated air. Hence, when the temperature of the ice point is measured 
with the gas thermometer, there are significant variations in the measured 
values of Pice. There are also difficulties in measuring Psteam precisely. This is 
of little importance at ordinary temperatures, but when these measurements 
are extrapolated back to zero gas pressure to give an intercept of about −273° 
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Figure 1-7  Values of Pice and Psteam at the steam and ice points.
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centigrade, there is a corresponding uncertainty in this intercept of perhaps as 
much as 0.05° centigrade. If the origin is now taken to be this intercept, that is, 
absolute zero, then any uncertainty in its value gives a relatively large error at 
low temperatures. For example, with this quoted uncertainty in the intercept, 
the boiling point of helium at 4.22 K has an uncertainty of 0.05 K, or about 1%!

This uncertainty explains why the single-fixed-point scale was adopted in 
1954. The triple point of water is precisely reproducible, and absolute zero is 
precisely determined as the limiting temperature at which the pressure in an 
ideal gas thermometer tends to zero (shown on the right of Figure 1-7). Note 
that (1) the triple point is 273.16 K above absolute zero by definition; (2) the ice 
point at 273.15 K is 0.01 K colder than the triple point by measurement; and 
(3) Equation 1.6 is used as the definition of the supplementary Celsius scale to 
obtain the values for the temperatures in °C as shown.

PROBLEMS

	 1.1	 On the Fahrenheit temperature scale, the ice point and steam point are 
32°F and 212°F, respectively. (a) At what temperature do the Fahrenheit 
and Celsius scales give the same temperature? (b) Find absolute zero 
(−273.15°C) on the Fahrenheit scale to two decimal places. (c) The tem-
perature you found in (b) is the basis for the Rankine temperature scale, 
an absolute temperature using Fahrenheit-sized degrees. Express the 
ice point and steam point in Rankine.

	 1.2	 Consider a gas contained in the cylinder-piston arrangement shown in 
Figure 1-1. The gas is pure nitrogen (N2) with a mass of 1.60 g and is in 
equilibrium with its surroundings. The gas is initially at standard tem-
perature and pressure, with P = 101 kPa and T = 0°C. (a) Find the gas’s 
volume. (b) The piston is now moved, slowly enough so that equilib-
rium with the surroundings is maintained, until its pressure reaches 
120 kPa. What is the gas’s new volume?

	 1.3	 The length of the mercury column in a mercury-in-glass thermometer is 
5 cm when the bulb is immersed in water at its triple point. What is the 
temperature on the mercury-in-glass scale when the length of the col-
umn is 6.0 cm? What will the length of the column be when the bulb is 
immersed in a liquid at 100° above the ice point, as measured on the mer-
cury-in-glass scale? If the length of the column can be measured to within 
only 0.01 cm, can this thermometer be used to distinguish between the 
ice point and the triple point of water? You may take the temperature of 
the ice point, as measured on the mercury-in-glass scale, as 273.15 K.

	 1.4	 The resistance of a wire is given by

	 R R t t= + +0
2( )1 α β 	
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		  where t is the temperature in degrees Celsius measured on the ideal gas 
scale and so R0 is the resistance at the ice point. The constants α and β 
are 3.8 × 10−3K−1 and −3.0 × 10−6K−2, respectively. Calculate the tempera-
ture on the resistance scale at a temperature of 70°C on the ideal gas 
scale.

	 1.5	 The table below lists the observed values of the pressure P of a gas in a 
constant-volume gas thermometer at an unknown temperature and at 
the triple point of water as the mass of gas used is reduced.

		  By considering the limit PTP→0 (P/PTP) determine T to two decimal 
places. What is this in °C? (1 torr is a pressure of 1 mm of Hg).

	 1.6	 Different thermometers disagree, except at the fixed points by defini-
tion. When using the modern definition of temperature using a single 
fixed point at the triple point of water (273.16 K) with

	 T T
X

X
x TP

TP

= 	

		  these differences can be quite significant. To see how big these differ-
ences can be, complete the table below for the temperatures Tx of the 
boiling points of various liquids (at an external pressure of 1 atm) and the 
melting point of one solid, using thermometers with different thermo-
metric variables X. The values of XTP for the different thermometers are 
given in the bottom row. Quote your values for the temperature to the 
nearest degree only. The temperature given for Sn is for the melting point.

		  Comment on the temperature values for the two constant-volume ther-
mometers. Which one gives values closer to the ideal gas scale?

PTP (torr) 100 200 300 400

P (torr) 127.9 256.5 385.8 516

Copper nickel 
thermocouple

Platinum 
resistance 

thermometer

Constant-
volume H2 

thermometer

Constant-
volume H2 

thermometer

E (mV) TE R (Ω) TR P (atm) TP P (atm) TP

Liquid/Solid

 N2 −0.10 ? 1.96 ? 1.82 ? 0.29 ?

 O2 0.00 ? 2.50 ? 2.13 ? 0.33 ?

 H2O 5.30 ? 13.65 ? 9.30 ? 1.37 ?

 Sn 9.02 ? 18.56 ? 12.70 ? 1.85 ?

At T.P. 2.98 273 9.83 273 6.80 273 1.00 273
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Chapter 2: Reversible Processes 
and Work

Thermodynamics is concerned with changes in the different state functions 
that occur when a system changes from one equilibrium state to another.

Pushing in a piston (as in Figure 1-1) and compressing the gas in a cylinder 
from an equilibrium state (P1, V1) to a new equilibrium state (P2, V2) is an 
example of a process.

2.1  REVERSIBLE PROCESSES

There is a particular class of idealized processes that has enormous value in 
thermodynamics—processes that are reversible. They are valuable because it 
is possible to calculate changes in the state functions for any process using 
them. This point will be made clear in Section 2.1.4, when considering an 
example of the thermodynamic method. First, it is necessary to define revers-
ible processes and how they are realized.

Clearly, reversible implies that, in any such change, the system must be capa-
ble of being returned to its original state. However, reversible means much 
more than this in that, when the system is returned to its original state, the 
surroundings must be unchanged too.

A clue to the conditions for reversibility can be gained by considering a pendu-
lum being displaced from one equilibrium position to another by a force F, as 

A process is the mechanism of bringing about such a change. These 
initial and final equilibrium states are called the end points of the 
process.
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in Figure 2-1. Any force acting through a displacement does work. Let the force 
F(θ) be only infinitesimally greater than the restoring force mg sin θ at every 
stage of the displacement, from θ1 to θ2. The pendulum then goes through a 
series of equilibrium states, because the process could be stopped at any stage, 
and the pendulum held where it is. Now if F is reduced by a very small amount, 
the pendulum will move back the other way, with the work done against the 
force being exactly equal to the work done in the initial displacement. The 
net work done is zero, and the entire system and its surroundings have been 
returned to their initial state, which satisfies the conditions for reversibility. 
This is true provided there are no frictional forces present, such as if the bob 
moved in a viscous medium. This leads to the following generalizations:

2.1.1  Isothermal compression

For a more relevant thermodynamic example of a reversible process, consider 
again the gas-cylinder system (Figure 1-1). Let the cylinder undergo an isother-
mal, reversible compression at temperature T, from the state (P1, V1) to the state 

A process that can be thought of as a succession of equilibrium states 
is called a quasistatic process. Reversible processes are quasistatic 
processes where no dissipative forces such as friction are present.

θ2

F

mg

θ1

θ

Figure 2-1  A simple pendulum. When the pendulum is displaced, it can be moved 
through a series of equilibrium states.
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(P2, V2). This could be achieved in the following way. The cylinder is fitted with a 
frictionless piston and contains the gas in the initial state (P1, V1). A force

F P A= 1

is applied to the piston to oppose the gas pressure, where A is the area of the 
piston. The walls of the cylinder are diathermal, and the surroundings at the 
temperature T are so large that this temperature is unaffected by anything 
done to the gas-cylinder system. Such surroundings are called a thermal 
or heat reservoir, or simply a reservoir. The external force F is now increased 
infinitesimally, and the system is allowed to come to a new equilibrium state 
at the same temperature. This process is repeated until the final state (P2, V2) 
is reached.

It is useful to represent the process on a graph of pressure versus volume, 
generally referred to as a PV diagram, such as the one shown in Figure 2-2. 
Because the system is always in an equilibrium state, with a well-defined P, V, 
and T, the process may be plotted as a succession of points (P, V) that forms a 
continuous curve between the end points (P1, V1) and (P2, V2). The curve shown 
in Figure 2-2 is an isotherm, as described in Section 1.2.4, because it represents 
a process at constant temperature. The equation of state PV = nRT holds for 
each point in the process.

In contrast, it is possible to bring about the same change between the same 
two end points by pushing in the piston suddenly from volume V1 to volume 
V2. Then there would be turbulence, with finite temperature and pressure gra-
dients both within the gas and between it and the surroundings. Although the 

Reversible
Irreversible

P1, V1

P2, V2

V

P

Figure 2-2  A reversible process may be shown as a continuous line on a PV diagram. 
The one shown here is an isothermal process. An irreversible process cannot be shown 
in this way.
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gas would eventually settle down to the equilibrium state (P2, V2), it does not 
pass through intermediate equilibrium states, and the process is irreversible. 
It is impossible to plot this irreversible process on a PV diagram, because the 
intermediate stages do not have well-defined pressures or temperatures. The 
irreversible process is represented schematically by a hatched line, as shown 
in Figure 2-2. Additionally, the equation of state PV = nRT does not hold for the 
intermediate stages in an irreversible process.

2.1.2  Thermal expansion

Solids and liquids generally expand when their temperature increases. (Gases 
will expand as much as their container permits, so thermal expansion in gases 
is harder to quantify.) Consider first a solid metal bar of length L, initially at 
temperature T. For a small increase in temperature ΔT, the increase in length 
ΔL is proportional to both L and ΔT. The constant of proportionality is called α, 
the linear coefficient of thermal expansion, so that ΔL = αLΔT.

More precisely, α is defined by

where in the limit as ΔT approaches zero the ratio ΔL/ΔT becomes a deriva-
tive. Because Equation 2.1 expresses the change made per degree, α can be 
expressed equivalently in units K−1 or °C−1. The coefficient α varies with tem-
perature, though for many materials it varies slowly over fairly wide tempera-
ture ranges. Copper, a fairly typical metal, has α = 1.65 × 10−5 K−1 at 20°C and 
1.83 × 10−5 K−1 at 230°C.

Similarly, in three dimensions the change in volume ΔV of a solid or liquid 
is  proportional to the original volume V and the temperature change ΔT. 

In a reversible process, there are never finite pressure or temperature dif-
ferences, either within the system or between the system and the sur-
roundings. Further, the direction of a reversible process can be changed 
by an infinitesimal change in the external conditions.

	
α = 





1
L

dL
dT 	

(2.1)
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Now the proportionality constant is β (the volume coefficient of thermal expan-
sion), so that ΔV = βVΔT. In the limit as ΔT approaches zero,

Thermal expansion is an example of a reversible process, because cooling a 
substance by an amount ΔT results in a volume decrease equal to the volume 
increase that occurs when the temperature is increased by ΔT. The volume (or 
density) of a solid or liquid depends on pressure as well as temperature, so 
measurements of α or β should be taken at constant pressure. For a solid mate-
rial, α and β are related (see Problem 2.2):

β α≈ 3

Linear and volume expansion coefficients for a few sample materials are pre-
sented in Table 2-1. More extensive and precise data tables can be found on 
many web sites. Generally β tends to be larger for liquids than solids, reflecting 

	
β = 





1
V

dV
dT 	

(2.2)

Table 2-1  Thermal Expansion Coefficients (at T = 20°C Unless Otherwise Noted)

Material
Coefficient of linear 

expansion α (×10−5 °C−1)
Coefficient of volume 

expansion β (×10−5 °C−1)

Solids

Aluminum 2.4 7.2

Brass 2.0 6.0

Copper 1.7 5.0

Concrete 1.2 3.6

Glass (Pyrex) 3.3 9.9

Lead 2.9 8.7

Silver 1.9 5.7

Steel (typical) 1.2 3.6

Liquids

Ethanol 75

Mercury 49

Water (1°C) −4.8

Water (20°C) 21

Water (50°C) 50
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the fact that liquids expand faster than solids for a given temperature rise. An 
important exception to this is liquid water just above its freezing point of 0°C 
at atmospheric pressure. The volume coefficient β decreases as temperature 
drops from room temperature and reaches β = 0°C−1 at T = 4°C. From 4°C to 0°C, 
β is actually negative, which means that the cooling water expands slightly.

2.1.3  Bulk modulus

Moduli of elasticity are always given as stress/strain or force/unit area divided 
by the fractional deformation. For a solid or fluid, the bulk modulus B is given by

	
B V

P
V T

= − ∂
∂





 ≡ 1

κ 	
(2.3)

The constant T denotes that the bulk modulus is determined at constant tem-
perature, and so this is the isothermal bulk modulus. The negative sign ensures 
that B is a positive number because, for all known substances, ΔV is negative 
for a positive increase in pressure ΔP. The reciprocal of the bulk modulus is the 
compressibility κ.

For a stretched wire of cross-sectional area A, the appropriate modulus of elas-
ticity is Young’s modulus

	
Y

L
A

F
L T

= ∂
∂







	
(2.4)

(Note that a positive force ΔF results in an increased length ΔL, so no negative 
sign is needed in Equation 2.4.) The units for Young’s modulus Y are the same 
as pressure, with SI unit Pa or N/m2.

2.1.4 � An example: The effect of temperature 
on tension in a wire

As an example of how Young’s modulus can be useful in thermodynamics, con-
sider the wire shown in Figure 2-3, clamped between two rigid supports and thus 
held at constant length L. Suppose the wire is now cooled from T1 to T2. Because 
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the wire is not allowed to shrink as it normally would with cooling, the result is an 
increase ΔF in the wire’s tension, which can be found as a function of ΔT.

First, note that the equilibrium states of the wire are fixed by specifying two of 
the state variables F, L, and T, which are related by some equation of state

g F L T( , , ) = 0

The wire undergoes a process in which it is changed from one equilibrium 
state (F1, T1) to another (F2, T2), both with the same length.

Suppose for a moment that the wire is cooled from T1 to T2 reversibly. This could 
be achieved by bringing up to the wire a whole series of large bodies ranging 
in temperature from T1 to T2 to effect a quasistatic cooling through a sequence 
of equilibrium states.

For any one of these states g(F, L, T) = 0. Or, solving for F,

F F L T= ( , )

where F(L, T) is a function of L and T alone. Then

dF
F
T

dT
F
L

dL
L T

= ∂
∂





 + ∂

∂






Initial

Rigid supportRigid support

F1F1 T1

L

L

Final
F2F2 T2

Figure 2-3  A stretched wire being cooled under conditions of constant length.
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where the second term is zero because the cooling takes place under condi-
tions of constant length.

Integrating,

∆F F F
F
T

dT
L

T

T

= − = ∂
∂





∫2 1

1

2

Unfortunately, the integrand is (∂F/∂T)L, which is unknown. However, from 
Section 2.1.3

Y
L
A

F
L L

L
TT F

= ∂
∂





 = ∂

∂




and α 1

which contain F, L, and T in different orders from the required (∂F/∂T)L. It 
is possible to obtain this in terms of Y and α using the cyclical relation (see 
Appendix B):

∂
∂







∂
∂







∂
∂





 = −F

T
L
F

T
LL T F

1

Therefore

∂
∂





 = − ∂

∂






∂
∂





 = −F

T
F
L

L
T

YA
L T F

α

Finally

∆ = − = − ∫∫F YA dT YA dT
T

T

T

T

α α
1

2

1

2

and

∆ = − −F YA T Tα( )2 1

if Y, A, and α are independent of T. The result ΔF is positive if T2 < T1, so the 
tension in the wire increases as expected.

One might object by saying: This is fine if the cooling is actually reversible, but 
in practice the cooling will not be reversible, because one may simply heat the 
wire and let it cool. This will result in large temperature gradients both within 
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the wire itself and between the wire and the surroundings. Then the interme-
diate states are not equilibrium states, and so one cannot apply the equation of 
state F = F(L, T), and the analysis appears to be invalid.

The answer to this critique is that the preceding analysis is still sound because 
the wire is being taken between equilibrium states. The initial tension of the 
wire is completely fixed by specifying the initial state (L, T1) as is the final ten-
sion by specifying the final state (L, T2). Thus the change in the tension is deter-
mined by specifying the end points:

∆F F F F L T F L T= − = −2 2 2 1( , ) ( , )

In other words, the change in the state function F does not depend on the path 
taken from state 1 to state 2. Therefore ΔF is path independent, being deter-
mined only by the end points. It is wise to choose the most convenient path, 
which happens to be a reversible path.

2.2  WORK

The remainder of this chapter concerns topics involving work in thermody-
namic processes, in preparation for the introduction of the first law of thermo-
dynamics in Chapter 3. A good model for understanding work is the familiar 
gas-cylinder system (Figure 1-1), and ideas developed from this model can be 
generalized to other systems.

2.2.1  Work in reversible processes

Suppose that a gas in the initial equilibrium state (P1, V1) is compressed to a 
new equilibrium state (P2, V2) by increasing the external force on the piston 
and allowing it to slide in. If friction is present, some of the work done on the 
gas by the piston is expended against these frictional forces. However, if no 
frictional forces are present, all of this work goes into performing work on the 

The elegant trick just shown is used time and time again in thermody-
namics to calculate changes in state functions for processes between a 
pair of equilibrium states.



28    CHAPTER 2: REVERSIBLE PROCESSES AND WORK

gas. Then it is possible to find a simple expression for the work done in terms 
of the state variables of the gas, provided that the compression is performed 
quasistatically, so that the pressure is well defined and uniform throughout 
the gas. In other words, the gas must be compressed reversibly.

Suppose that, at one of the intermediate equilibrium states during the revers-
ible compression, the pressure is P and the balancing force on the piston is F. 
Then, as shown in Figure 2-4

F PA=

where A is the area of the piston. If the force is increased infinitesimally so 
that the piston moves in by dx, the work done on the gas by the surroundings 
applying the force F is

	 dW PA dx P dV= = − ( )reversible 	 (2.5)

Note that the minus sign in Equation 2.5 is necessary because during com-
pression the volume is decreased, but the work done on the gas is positive. The 
total work performed on the gas in the process is

where as indicated these results are true for reversible processes.

This reversible work is in fact the maximum work that can be done in a com-
pression or expansion, which can be seen as follows. The work done by com-
pressing the gas is ∫V

V

F dx1

2
 and will be a maximum when F is as large as 

	

W P dV
V

V

= −∫
1

2

( )reversible

	

(2.6)

F

dx

Area A

PA

Gas

Figure 2-4  The work done on a gas when it is compressed reversibly through an infinitesi-
mal volume change dV is −P dV.
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possible at all stages in the process. If the gas is to be compressed, the largest 
possible value for F is infinitesimally more than PA, and this leads to Equation 
2.6 for the maximum work.

Although Equations 2.5 and 2.6 apply to reversible processes, they also apply 
to some irreversible processes. This will be the case when the actual expansion 
(or compression), if considered by itself, is quasistatic, but where there is irre-
versibility elsewhere in the system. This is best illustrated by two examples.

	 1.	 Consider a cylinder equipped with a frictionless piston containing two 
solids that react slowly to produce a gas, as in Figure 2-5a. Because the 
gas is released slowly, the pressure P inside the cylinder is only infinitesi-
mally greater than the pressure P0 of the surroundings, and the piston is 
always infinitesimally close to mechanical equilibrium. In other words, 
there is never a finite pressure drop across the piston. The chemical 
reaction is irreversible in that it cannot be reversed by an infinitesimal 
change in the external conditions, such as the pressure or the tempera-
ture. By the argument presented above, the work done on the system by 
its surroundings is again

	

W PdV P dV P V V
V

V

V

V

= − = − = − −∫ ∫
1

2

1

2

0 0 2 1( )

	

(2.7)

		  where V1 and V2 are the initial and final volumes. This result holds even 
though the whole process is irreversible because of the chemical reaction.

	 2.	 Consider as a second example the pump, shown in Figure 2-5b, contain-
ing gas at the high pressure P. The frictionless piston is pushed in slowly, 
thus expelling the enclosed gas through the small hole at the end into the 
surrounding atmosphere at the lower pressure P0. As it is being pushed 
in slowly, the piston is always infinitesimally close to being in mechani-
cal equilibrium, with the applied force being only infinitesimally greater 

P = P0
P0

P0

Reacting chemicals

(a) (b)

P < P0 F

Small hole Gas

Figure 2-5  Two examples of dW = −PdV when the process is irreversible. (a) Two solids 
react to produce a gas. (b) Gas is allowed to leak through a small hole.



30    CHAPTER 2: REVERSIBLE PROCESSES AND WORK

than PA. Again, there is never a finite pressure drop across the piston. 
However, the whole process is irreversible because, even if F is reduced 
slightly, the process will not stop, and gas will still flow out through the 
small hole. The work done by the surroundings on the gas is again

W PdV
V

V

= −∫
1

2

		  where V1 and V2 are the initial and final volumes.

We now return to the general discussion of reversible processes. On a PV dia-
gram, it is seen from Equation 2.6 that the absolute value of the work done in a 
reversible process is the area under the curve or path for the process. Because 
there are an infinite number of paths connecting 1 and 2, the work done 
depends on the actual path chosen, that is, on the way P varies with V.

For example, suppose a gas undergoes isothermal expansion, as would be the 
case if the cylinder walls were diathermal and were in contact with a thermal 
reservoir at T. This path is represented by the upper curve 1–2 shown in Figure 
2-6. Then

	

W P dV nRT
V

dV nRT
V
V

V

V

V

V

= − = − = − 



∫ ∫

1

2

1

2

1 2

1

ln

	

(2.8)

where we have used the ideal gas law PV = nRT. Notice that the result in 
Equation 2.8 works equally well for expansion and compression. For expansion 

Isotherm at T

VV2V1

P2

P1

P

3

1

2

Figure 2-6  Work depends on the path.
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V2 > V1 and so ln(V2/V1) > 0 and the work done on the gas is negative. This makes 
sense, because in expansion the gas does positive work on its surroundings. If 
the gas is compressed from volume V1 to V2, then V2 < V1 and ln(V2/V1) < 0, and 
the work done on the gas is positive, as it must be for compression.

Another simple reversible path is 1–3–2 in Figure 2-6, consisting of an isochoric 
(constant volume) decrease of pressure 1–3 followed by an isobaric expansion 
3–2. For this process, the work done on the gas is simply −P2(V2 − V1) which is 
different from that for the isothermal expansion.

The relationship between work done and area on a PV diagram is especially 
useful for a reversible cycle that begins and ends at the same point. For exam-
ple, consider the process 1–3–2–1 in Figure 2-6. The area enclosed by the path 
is equal to the magnitude of the net work done on the gas for the entire pro-
cess. However, the sign of the net work depends on the direction taken. Positive 
work is done on the gas in the process 2–1 and negative work is done in the pro-
cess 3–2. Because the positive work is greater, the net work for the entire cycle 
is positive. However, if the same process is taken in reverse (1–2–3–1), then by 
the same reasoning the net work for this process is negative.

It is important to remember the following general statement about work:

This is in contrast with the volume, for example, which is uniquely defined 
by the state of the system and where the change is always V2 − V1 irrespective 
of the process used to take the system from 1 to 2. In the language of Appendix 
B, the infinitesimal work term is written đW, where the bar through the d 
denotes that đW is an inexact differential. Although in general work is path 
dependent, there is a class of processes where the work is path independent; 
these will appear in Chapter 3 in the discussion of adiabatic work.

2.2.2  Free expansion

Consider a gas in the state (P, V) contained in the left-hand part of a double-
sectioned chamber, as in Figure 2-7. There is a vacuum in the right-hand part. 
For simplicity, let the volumes of each part be equal to V. Let the intervening 
partition be broken so that the gas expands to fill the entire space with volume 

In general, work is path dependent and cannot be expressed simply as 
the difference between the two end point values of some state function.
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2V, quickly settling down to a new equilibrium state. This process is known as 
a free expansion.

How much work is done on the gas in this process? A blind application of 
W P dVV

V

= −∫ 1

2
 would give a finite answer, because the volume certainly 

changes. Of course, the answer is zero, since the gas does no work on the sur-
roundings outside the chamber, and there is no outside agent applying any 
force as with the piston in the previous example. The expression W P dVV

V

= −∫ 1

2
 

cannot be applied here, because this process is not reversible. This example 
illustrates two points in thermodynamics.

	 1.	 It is important to be clear as to what is the system. Here it is the chamber 
as a whole and not just the left-hand part initially containing all the gas.

	 2.	đW = PdV is applicable only to reversible processes and to those special 
irreversible processes such as those considered in Section 2.2.1 where 
there is no finite pressure drop across the piston.

2.2.3  Sign convention for work

There are unfortunately different sign conventions used for W in different 
texts. The convention we have already established in Section 2.2.1 is that W 
is the work done on a system by its surroundings. This is the most common 
convention today and the one that most physicists adopt. However, in some 

Strictly, the walls should also be adiabatic for a true free expansion, but 
this is not important here.

Partition

Gas

Break
partition

2VVV

Figure 2-7  A free expansion. When the partition is broken, the gas occupies the whole 
volume but no work is performed on the gas.
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books (especially older ones) you will see the opposite convention, in which 
W is taken to be the work done by a system on its surroundings. This alternate 
convention might make sense in some applications, for example for engineers 
concerned about how much work is done by an engine. However, we will stick 
with our established convention for W, because it makes more sense in most 
applications and makes it easier to understand the first law of thermodynam-
ics (Chapter 3).

Using the adopted convention, the generalization of Equation 2.5 becomes

2.2.4  Dissipative work

Suppose there is a viscous fluid that can be stirred, as in Figure 2-8, by the 
action of the falling weight. Because of the dissipative viscous effects in the 
fluid, the temperature will rise and the state of the fluid system will change. 
This work is performed irreversibly; if the torque on the shaft attached to the 
stirrer was reduced infinitesimally, the shaft would not start to go the other 
way with the weight rising. We call this kind of irreversible work dissipative 
work.

	 đW P dV= − ( )reversible 	 (2.9)

Regardless of which convention is chosen, it makes no difference to the 
fundamental thermodynamic relations, but one must stick consistently 
with one or the other.

Stirrer

Falling weightFluid

Figure 2-8  Dissipative work.
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Another example of dissipative work is the passing of a current I through a resis-
tor R immersed in the fluid. Then the work performed in time t is I2Rt. Again this 
work is irreversible, because reducing the battery voltage slightly will not cause 
the current to reverse, with the resistor then doing work on the battery.

Unlike reversible work considered in Section 2.2.1, it is not possible to find an 
expression for dissipative work in terms of the state variables of the system.

2.3  OTHER KINDS OF WORK

There are systems other than the compressible gas or fluid commonly encoun-
tered in thermodynamics. In this section you will see the appropriate form for 
the infinitesimal work term in a reversible process for each of the following.

2.3.1  Extensible wire

The work done by us acting as the surroundings when a wire at a tension F is 
stretched through an infinitesimal distance dx is

	 CW F dx= 	 (2.10)

This is positive for a positive extension dx, which is consistent with the estab-
lished sign convention.

2.3.2  Surface film

A surface film, such as that in a soap bubble, has equilibrium states that are 
completely specified by the state variables, the area A, and the surface ten-
sion Γ. Normally Γ is found experimentally to depend on the temperature 
only and not on the area.

Consider the film shown in Figure 2-9 being stretched isothermally, with 
the moveable bar being pulled an infinitesimal distance dx by an external 
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force that is only infinitesimally greater than Γℓ. Then, the infinitesimal 
work done is

	 CW dx dA= =Γ Γl 	 (2.11)

The work done is positive if dA is positive. (This analysis assumes a single-
sided film.)

2.3.3  Reversible electrolytic cell

The equilibrium states of a reversible electrolytic cell, such as the simple 
Daniell cell, are specified by the state variables, the charge Z stored, and the 
emf ε. Suppose that Z is increased infinitesimally by dZ; then the work per-
formed by the external charging circuit is

	 CW dZ= ε 	 (2.12)

A comment should be added here about notation. It is necessary to use 
the symbol Z, instead of the more usual symbol Q, for charge because, in 
thermodynamics, the symbol Q is reserved for heat. Both Z and Q appear 
in the thermodynamics of an electrolytic cell, and it is important to make 
a distinction.

F

Moveable bar

Wire frame
dx

ℓ Γℓ

Figure 2-9  The work done is increasing the surface area of a film by dA is ΓdA.
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2.3.4  A simple magnetizable material

The equilibrium states of a simple magnetic material are specified by the state 
variables: the overall magnetic moment M, and the applied magnetic field B0. 
Paramagnetic and diamagnetic compounds fall into this category, but one 
must exclude most ferromagnetic materials, where hysteresis effects result in 
there being no unique relation between M and B0 at each temperature. If the 
magnetization is uniform over the volume of the sample,

M = MV

where M is the magnetization, or the magnetic moment per unit volume.

In Appendix C it is shown that, when the sample is uniformly magnetized, the 
external work required to increase the magnetic moment from M to M + dM 
in the applied magnetic field B0 is

	 CW B d= 0 M 	 (2.13)

2.3.5  A dielectric material

The equilibrium states of a dielectric substance are specified by the state vari-
ables: the overall electric dipole moment p and the applied electric field E. It is 
shown in Appendix C, where only linear dielectrics with no hysteresis effects 
are considered, that the infinitesimal external work required to increase the 
overall dipole moment of a uniformly polarized dielectric from p to p + dp in 
a field E is

	 CW E dp= 	 (2.14)

For such a uniformly polarized dielectric, the overall dipole moment is related 
to the polarization P, or dipole moment per unit volume, by

p PV=

The results from all these “other kinds of work” are collected in Table 2-2. 
Suppose one were to consider as the system only part of the original system. 
Then, if the system was an ideal gas, the pressure of the subsystem considered 
would be the same as in the original system, but the volume would be smaller. 
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Because the pressure is in this sense size independent, we say that it is an inten-
sive variable; conversely, volume is an extensive variable. In Table 2-2 the state 
variables are grouped according to whether they are extensive or intensive.

There is one final point. All the work processes that have been considered in 
this section may be thought of as equivalent to a process whose sole effect on 
the surroundings is the raising or lowering of a weight, and thus equivalent 
to mechanical work. Notice that a weight does not actually have to be raised, 
only that it could be raised. Clearly this is so for the case of an expanding gas, 
as shown in Figure 2-10a. As another example, consider dissipative electri-
cal work where a current I enters the system containing a resistance R, as in 
Figure 2-10b. The current may be thought of as being produced by a genera-
tor, the shaft of which is turned by the action of a falling weight. Work is then 
done on the system at the rate of I2R.

Similar processes involving the lifting or lowering of a weight may be thought 
up for all the other forms of work considered. This idea will be useful in distin-
guishing between work and heat in Chapter 3.

System
Generator

Weight

R

I

IGas

Weight

(a) (b)

Figure 2-10  Work is always equivalent to raising or lowering a weight. (a) An expanding gas 
raises a weight. (b) A falling weight produces electric current, which does work at a rate I2R.

Table 2-2  Infinitesimal Work in Various Reversible Processes

System Intensive variable Extensive variable Infinitesimal work

Gas or fluid P V −P dV

Film Γ A Γ dA

Cell ε Z ε dZ

Magnetic material B0 M B0 dM
Dielectric material E p E dp
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2.4 � EXAMPLE OF THE CALCULATION OF 
WORK IN A REVERSIBLE PROCESS

As an example of a reversible process, consider changing the state of a com-
pressible fluid from (P1, T1) to (P2, T2). Calculating the work done in this process 
is a good illustration of some of the ideas developed in this chapter.

The infinitesimal work done in part of the process is –P dV, so it is necessary to 
find dV. This example is typical of many in thermodynamics in that one has to 
find the change in one state function when one is told the change in two others—
here (P2 − P1) and (T2 − T1). A similar example occurred in Section 2.1.4, involving 
the calculation of ΔF for the wire given the changes in temperature and length. 
The technique is always the same. For a reversible process, which is a succes-
sion of equilibrium states, the equation of state holds at every stage in the pro-
cess. Thus the equation of state is written in the form that gives the state function 
whose change we wish to find in terms of the other two whose changes are given.

Therefore,

V V P T= ( ),

By the chain rule:
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V
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
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In essence, the problem is solved if one can perform the integrations, and this 
can be done in certain simplified cases. For example, suppose the change is 
isothermal. Then

W
PV
B

dP V
P P

B
P

P

= = −



∫

1

2

2
2

1
2

2

if the volume V and bulk modulus B stay approximately constant during the 
process.

Although it is physically reasonable to take V and B outside the integral if 
their dependencies on P are small, this step can be justified more rigorously 
mathematically. It is shown in elementary texts on analysis (see the book by 
Stephenson 1996) that, if ϕ(x) and f(x) are two well-behaved functions of x,

f x x dx f x dx x x
x

x

x

x

( ) ( ) ( ) ( )φ φ ς ς= ≤ ≤∫ ∫
1

2

1

2

1 2where

This is known as the second mean-value theorem of integral calculus. If V 
is a slowly varying function of pressure, then it is justified to take it outside 
the integral, providing it is given a value between V(P1) and V(P2). This will of 
course be very little different from its original value V(P1) or simply V. The same 
argument holds for B.

This is also the rigorous justification for the analysis of the discussion of the 
stretched wire in Section 2.1.4, where Y, A, and α were taken outside the inte-
gral in evaluating ΔF.

PROBLEMS

	 2.1	 10 moles of an ideal gas are compressed isothermally and reversibly 
from a pressure of 1 atm to 10 atm at 300 K. (a) How much work is done 
on the gas? (b) How much work is done on the gas in the reverse process?

	 2.2	 Show that for small thermal expansions of a solid object the linear and 
volume coefficients of expansion are related by β ≈ 3α.

	 2.3	 A concrete road surface consists of 15-m long sections separated by 
gaps to allow for thermal expansion as the weather changes. Suppose 
the expected road surface temperatures vary during the year from 
a low of −15°C to a high of 45°C. (Note: On a sunny day, road surface 
temperatures can be much higher than air temperatures.) The road is 
designed so that there remains a 2.0-mm gap between sections on the 
hottest day. What is the gap on the coldest day?
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	 2.4	 Old-style liquid-bulb thermometers used thermal expansion of a liquid 
inside a tube of fixed diameter to indicate temperature. (a) Consider a 
mercury-filled thermometer with the liquid expanding along a linear 
scale, calibrated to a change of 10°C per cm length. If the inside diam-
eter of the tube is 0.10 mm, what is the volume of mercury? Is your 
answer reasonable? (b) Repeat for a medical thermometer with the 
same inside diameter, calibrated to change by 1.0°C for every 2.0 cm of 
length. (c) Repeat parts (a) and (b) using an ethanol-filled thermom-
eter of the same inside diameter, and compare your results with the 
mercury.

	 2.5	 An ideal gas undergoes the following reversible cycle: (i) an iso-
baric expansion from the state (P1,V1) to the state (P1,V2); (ii) an 
isochoric reduction in pressure to the state (P2,V2); (iii) an isobaric 
reduction in volume to the state (P2,V1); (iv) an isochoric increase 
in pressure back to the original state (P1,V1). (a) What work is done 
on the gas in this cycle? (b) If P1 = 3.0 atm, P2 = 1.0 atm, V1 = 1.0 L 
and V2 = 2.0 L, how much work is done on the gas in traversing the 
cycle 100 times?

	 2.6	 2.0 moles of an ideal gas is initially at P = 1.0 atm and T = 300 K. It is 
then taken through a three-step reversible process: (i) isobaric expan-
sion to twice its original volume; (ii) isothermal compression, return-
ing to the original volume; (iii) isochoric reduction in pressure to the 
original state. Find the work done on the gas in each step of the pro-
cess and the net work done on the gas for the process.

	 2.7	 The bulk modulus of water is 2.2 × 109 N/m2. (a) Find the pressure 
needed to compress water by 1% (i.e., to 99% of its initial volume). 
(b) How much work is done in compressing 10 kg of water by 1%?

	 2.8	 During a reversible adiabatic expansion of an ideal gas, the pressure 
and volume at any moment are related by PV γ = c where c and γ are 
constants. Show that the work done by the gas in expanding from a 
state (P1, V1) to a state (P2, V2) is

	
W

PV P V= −
−

1 1 2 2

1γ 	

	 2.9	 Ice at 0°C and 1 atm has a density of 916.23 kg/m3, while water under 
these conditions has a density of 999.84 kg/m3. How much work is 
done against the atmosphere when 10 kg of ice melts into water?

	 2.10	 A metal container, of volume V and with diathermal walls, contains n 
moles of an ideal gas at high pressure. The gas is allowed to leak out 
slowly from the container through a small valve to the atmosphere 
at a pressure P0. The process occurs isothermally at the temperature 
of the surroundings. Show that the work done by the gas against the 
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surrounding atmosphere is

	 W P nv V= −0 0( ) 	

		  where v0 is the molar volume of the gas at atmospheric pressure and 
temperature.

	 2.11	 A hypothetical substance has an isothermal compressibility κ = a/v 
and volume expansion coefficient β = 2bT/v, where a and b are con-
stants and v is the molar volume. Show that the equation of state is

	 v bT aP− + =2 constant 	

	 2.12	 A welded railway line, of length 15 km, is laid without expansion joints 
in a desert where the night and day temperatures differ by 50°C. The 
cross-sectional area of the rail is 3.6 × 10−3 m2. The rails are made of 
steel, which has Y = 2.0 × 1011 N/m2. (a) What is the difference in the 
night and day tension in the rail if it is kept at constant length? (b) If 
the rail is free to expand, by how much does its length change between 
night and day?

	 2.13	 Find an expression for the work done when a wire of length L is heated 
reversibly from a temperature T1 to a temperature T2 under conditions 
of constant tension F.

	 2.14	 The equation of state of a rubber band is

	

F aT
L
L

L
L

= −



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









0

0
2

	

		  where L0 is the original length and a is a constant equal to 1.3 × 10−2 N/K. 
How much work is performed when the band is stretched isothermally 
and reversibly from its original length of 10 cm to a length of 20 cm at a 
temperature of 20°C?

	 2.15	 A block of metal (with β = 5.0 × 10−5 K−1 and isothermal bulk modulus 
B = 1.5 × 1011 N/m2) at a pressure of 1 atm is initially at a temperature 
of 20°C. It is heated reversibly to 32°C at constant volume. (a) Calculate 
the final pressure. (b) If the heating had been carried out irreversibly, 
would this affect your answer?
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Chapter 3: The First Law 
of Thermodynamics

The first law of thermodynamics is essentially a statement of conservation of 
energy, a familiar and important concept in physics. It gives the precise rela-
tionship between the familiar concept of work and the new concepts of inter-
nal energy and heat, both of which are defined below. It is useful to begin by 
approaching the first law historically.

3.1  THE WORK OF THOMPSON AND JOULE

At the beginning of the nineteenth century, the dominant theory as to the 
nature of heat was that it was an indestructible substance (caloric) that flowed 
from a hot body, rich in caloric, to a cold body that had less caloric. Heat was 
quantified by the temperature rise it produced in a unit mass of water, taken as 
a standard reference substance. The experiments of Joseph Black (professor of 
medicine at the University of Glasgow, Scotland) in the late eighteenth century 
had shown that, when two bodies were put in thermal contact, the heat lost by 
one in this “method of mixtures” was equal to the heat gained by the other. 
This suggested that heat was a conserved entity.

However, a different theory was developed by Benjamin Thompson, an 
American who became Count Rumford of Bavaria and founded the Royal 
Institution of Great Britain. Thompson was working in the arsenal in Munich 
supervising the boring of cannons when he noticed that great heat was pro-
duced in that process, as measured by the temperature rise in the cooling 
water. Further, when he used a blunt boring tool, he found that he could even 

A fluid theory similar to the caloric theory was used at the time to explain 
the flow of electric charge.
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boil the water, with the supply of heat being apparently inexhaustible. He con-
cluded that heat could not be a finite substance such as caloric and that there 
is a direct relation between the work done and the heat produced.

The precise relation between work and heat was established by James Joule 
some 50 years later in a careful series of experiments between 1840 and 1849. 
Joule, a Manchester brewer, constructed a tub containing a paddle wheel that 
could be rotated by the action of weights falling outside the tub, shown sche-
matically in Figure 3-1. Water inside the tub could thus be stirred (irrevers-
ibly because of turbulence), raising its temperature between two equilibrium 
states. The walls of the tub were insulating, so the work was performed under 
adiabatic conditions. Thus, this kind of work is called adiabatic work. Working 
with extraordinary accuracy, Joule found the following.

	 1.	 4.2 kJ of work is required to raise the temperature of 1 kg of water through 
1° Celsius or kelvin (with Joule’s British units converted to modern SI 
units). This is known as the mechanical equivalent of heat J. It is interest-
ing to note that, when Joule examined Rumford’s results, he obtained a 
value for J that was consistent with his own.

	 2.	N o matter how the adiabatic work was performed, it always required 
the same amount of work to take the water system between the same 
two equilibrium states. Joule varied his adiabatic work by changing the 
weights and the number of drops. He also performed the same amount 
of adiabatic work electrically by allowing the current produced by an 
electrical generator to be dissipated in a known resistance immersed in 
the water.

Weights

Water

Adiabatic wall

Paddle

Figure 3-1  A schematic representation of Joule’s apparatus.
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3.2  THE FIRST LAW OF THERMODYNAMICS

The experimental findings are in the following statement of the first law of 
thermodynamics:

3.2.1  Internal energy

The statement above is equivalent to saying that the adiabatic work Wadiabatic 
expended in a process is path independent, depending only on the end equi-
librium points; this is true whether or not the process is reversible. Therefore 
there must exist a state function whose difference between the two end points 
2 and 1 is equal to the adiabatic work. This state function is called the internal 
energy U, with

	 W U Uadiabatic 2 1= – 	 (3.1)

In classical mechanics, you are familiar with the idea of the work done on a 
system increasing the kinetic and potential energies. However, internal energy 
explicitly excludes any change in these bulk energies. Joule’s tub was neither 
lifted nor set in motion across the floor of the laboratory. From a molecular 
viewpoint, the external work does in fact go into increasing kinetic and poten-
tial energies—those of the individual molecules that have kinetic energy 
because of their random motion and potential energy because of their mutual 
attraction. It is these molecular motions and relative positions that constitute 
the internal energy U.

3.2.2  Heat

If the system is not thermally isolated, then the work W done in taking the sys-
tem between a pair of equilibrium points depends on the path. For a given 
change, ΔU = U2 − U1 is fixed, but W is not now equal to ΔU. In other words, 
there is a difference between the adiabatic work required to bring about a 

If a thermally isolated system is brought from one equilibrium state to 
another, the work necessary to achieve this change is independent of 
the process used.
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change between two equilibrium states and the nonadiabatic work required 
to effect the same change, with the latter having an infinite number of possible 
values.

The difference between ΔU and W is called the heat Q. The generalization of 
Equation 3.1 is the important mathematical statement of the first law:

The first law says that the internal energy can be increased either by doing 
work on the system or by supplying heat to it. In this form, it is true for all pro-
cesses whether reversible or irreversible. In Chapter 2 you saw that all forms of 
work are equivalent to the mechanical raising or lowering of a weight in the 
surroundings. Therefore:

There has to be a sign convention for heat, just as there is for work. Heat Q is 
defined to be positive when it enters the system, so Equation 3.2 is correct as it 
stands, with U increasing if work is done on the system or if heat flows in.

The exchange of energy just described happens quite naturally whenever there 
is a temperature difference between a system and its surroundings, unless pre-
vented by an adiabatic barrier. This is just what Black observed historically, as 
described at the beginning of this chapter. The direction of heat flow is always 
from higher to lower temperature. Thus, an alternative definition of heat is the 
energy that flows spontaneously from an object with higher temperature to an 
object with lower temperature.

For an infinitesimal process, the first law takes the form

dU W Q= +C C

where both đQ and đW are written with bars through them to indicate that W, 
and therefore Q, are in general path dependent. In the language of Appendix B, 

First law of thermodynamics:

	 ∆U W Q= + 	 (3.2)

Heat is the nonmechanical exchange of energy between the system 
and the surroundings because of their temperature difference.



3.2 Th e First Law of Thermodynamics    47

they are inexact differentials. (See also Section 2.2.1.) Although in the special 
case of adiabatic work ∫đWadiabatic is path independent and in that sense đWadiabatic 
is an exact differential, we shall consistently write the infinitesimal work term 
as đW with a bar for all cases, because W is not a state function.

For a compressible fluid, where đW = −PdV for an infinitesimal reversible 
process, the first law becomes

dU PdV Q= − + C

or

	 CQ dU PdV= + ( )reversible 	 (3.3)

It is important to realize that this form applies to a reversible infinitesimal 
process. That is why reversible appears in parentheses as a reminder.

3.2.3  Heat or work?

In some cases the distinction between heat and work is obvious. For example, 
if the gas in Figure 2-4 is compressed or expanded by motion of the piston, any 
change in internal energy resulting from the piston’s motion is due to work W. 
If the process is an isothermal one, the gas must in the same process experi-
ence a flow of heat Q with its surroundings. Just to be clear, under isothermal 
compression W is positive and Q is negative, and under isothermal expansion 
W is negative and Q is positive, so that in either case the internal energy is 
unchanged by the first law (Equation 3.2).

As another example, consider Figure 3-2 showing a gas in a container with 
rigid diathermal walls. A current I flows through the heating coils of resis-
tance R wrapped around the container. In Figure 3-2a, the system denoted 

Although you are accustomed to associating derivatives with changes, 
resist the notion of thinking of đQ and đW as “changes” in heat or work. 
The amount of heat and work in a process is always a definite quan-
tity, so it would be meaningless to think of either one as a changing 
amount. On the other hand, it is reasonable to think of dU as a change 
in a system’s internal energy, resulting from the combined effects of 
work and heat.
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by the dashed line, includes the heating coils. As discussed in Section 2.3.5, 
work is being done on the system at the rate I2R because the current I enters 
the system. The energy crossing the system boundary is in the form of work. 
In Figure 3-2b, the system is the gas and container alone, excluding the coils. 
Here, no work is done on the system but there is energy flow across the system 
boundary in the form of heat because the temperature of the coils is higher 
than that of the gas. This simple example shows that, in distinguishing between 
heat and work, it is very important to be clear as to what constitutes the system.

A perhaps less obvious example occurs when you use a microwave oven to 
raise the temperature of your room-temperature cup of coffee. Does this 
process involve heat or work? In a case like this, it is good to remember that 
heat involves a spontaneous flow of energy from a warmer object to a cooler 
one. Since that is not occurring in this example, you must conclude that the 
microwave oven does work.

3.3  HEAT CAPACITY

Suppose there is a process that allows heat Q to flow into a system, changing 
it from one equilibrium state to another with a temperature difference ΔT, 

This last example illustrates why some everyday uses of the word “heat” 
are strictly speaking incorrect in thermodynamics. You might well say 
“I’m going to heat my coffee,” when as the last example shows this is not 
necessarily the case.

Heating coil System

I I

System
Gas Gas

(b)(a)

Figure 3-2  An illustration of the difference between work and heat. The input of energy 
into the system is in (a) as work and in (b) as heat.
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as in Figure 3-3. The heat capacity C of a system is defined as the limiting 
ratio of the heat introduced reversibly into the system divided by the tem-
perature rise:

	
C

Q
T

Q
dTT

= =
→

lim
∆ ∆0

C

	
(3.4)

The specific heat c is the heat capacity per unit mass:

	
c

m
Q

dT
= 



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1 C

	
(3.5)

Another common way to define specific heat is the heat capacity per mole, 
which is particularly useful in describing gases. This will be presented in 
Section 3.4.3.

3.3.1 � Constant volume and constant 
pressure processes

A process is not completely defined simply by the temperature difference ΔT 
between the end points. There are a large number of possible reversible paths 
between these end points, each with a different Q. It follows that there are a 
large number of possible heat capacities. We shall restrict ourselves to the two 
that are most commonly used and most useful in thermodynamics.

Lower case c is used consistently for specific heat, whether per unit mass, 
per mole, or another definite quantity.

Q

System

T → T + ΔT

Figure 3-3  The heat capacity is lim /
∆

∆
T

Q T
→0

( ).
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	 1.	 Heat capacity at constant volume, CV . Suppose the system is heated 
under conditions of constant volume, such as a gas in a closed container. 
For an infinitesimal isochoric reversible process, Equation 3.3 gives 
đQV = dU where the subscript V on đQV indicates that the volume is held 
constant. Although đQ for this special case is equal to the exact differen-
tial dU, the bar is still written through the symbol d because Q is not a 
state function. Thus

	
C

Q
dT

U
T

V
V

V

= = ∂
∂





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C

	
(3.6)

	 2.	 Heat capacity of constant pressure, CP. Now suppose the system is 
heated at constant pressure. The heat capacity at constant pressure is

C
Q

dT
P

P= C

		  where đQP is the heat added reversibly and isobarically to produce the 
temperature rise dT. Analogous to the result đQV = dU for constant 
volume, one can obtain a similar result for đQP by defining a new state 
function, the enthalpy H, as

	

For an infinitesimal process

dH dU PdV VdP= + +

		  Using the infinitesimal form of the first law, Equation 3.3:

	 dH Q VdP= +C 	 (3.8)

		  which holds again for a reversible process. For a reversible, isobaric 
process then,

	 dH QP= C 	 (3.9)

Enthalpy H:

	 H U PV= + 	 (3.7)
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That is, the heat evolved in a reversible isobaric process is equal to the enthalpy 
change. Thus

	

C
Q

dT
H
T

P
P
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
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C

	

(3.10)

Later in this chapter we present an engineering use for H when considering 
steady flow processes and dealing with turbines. Enthalpy also has a particu-
lar use in chemistry; it will be shown in Chapter 7 that the enthalpy change in 
an isobaric chemical reaction is equal to the heat of reaction, whether or not 
that reaction is reversible.

How do you decide whether it is more useful to measure CV or CP for a par-
ticular material? For solids and liquids, it doesn’t make much difference. As 
they are heated, there is normally negligible change in pressure and volume, 
so there is no significant difference between CV and CP, and the specific heat is 
often expressed as c without a subscript. However, for gases it is important to 
distinguish between CV and CP (or cV and cP). This distinction will be explored 
further in Section 3.5.

3.3.2  Measuring heat capacities

Consider again the definition of heat capacity and the requirement that the 
heat has to be introduced reversibly. This means that, as the heat is intro-
duced, the system must pass through a series of equilibrium states, with the 
pressure and temperature always being uniform throughout the system. 
What would be the consequences of putting in a small burst of heat at some 
point in the system, for example a gas, from a source at a finite temperature 
above that of the system? This will cause local heating, with pressure and 
temperature gradients introduced to the gas system, which makes ques-
tionable the determination of the heat capacity. In practice, heat capacities 
are measured in just this way, so there does appear to be an inconsistency. 
However, if the relaxation time for the attainment of an equilibrium state in 
the system is much shorter than the time scale of the heating, the system is 
always so close to an equilibrium state that there are no significant internal 
pressure and temperature gradients. The irreversible nature of the heating is 
then of no consequence. In fact, this is the usual situation, and so there is no 
inconsistency between the definition of heat capacity and its experimental 
determination.
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3.3.3  Experimental determination

In practice it is common to measure heat capacity (or specific heat) over a 
small enough temperature range that the quantity being measured is nearly 
constant. In that case Equation 3.5 shows that heat Q required to raise the 
temperature of a sample of mass m and specific heat c through a temperature 
increase ΔT is

	 Q mc T= ∆ 	 (3.11)

For example, it takes 418.6 J of heat to raise the temperature of 0.10 kg of water 
from 20°C to 21°C. Thus by Equation 3.11 the specific heat of water is

c
Q

m T
= =

°
= °

∆
418 6

1 0
.

( )( . )
( )

J
0.10 kg C

4186 J/ kg C

This is a well-known value, and in fact water’s reliable specific heat is used as 
a standard that can be used to determine the specific heats of other materi-
als in the process known as calorimetry. For example, suppose you want to 
determine the specific heat of a piece of metal. Take a known mass of the 
metal at one temperature and place it in another known mass of water at a 
different temperature. Heat flows between the two materials until they 

Table 3-1  Specific Heat of Selected Materials at 20°C Unless Indicated

Material Specific heat c in J/(kg · °C)

Aluminum 900

Beryllium 1970

Bismuth 123

Brass 380

Copper 385

Gold 126

Iron 449

Lead 128

Mercury 140

Silver 235

Tungsten 134

Zinc 387

Water 4186

Ice (−10°C) 2050

Steel (typical) 500
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reach the same equilibrium temperature. By conservation of energy, the 
heat lost by the initially warmer material is equal to the heat gained by the 
cooler one, and Equation 3.11 allows you to determine the unknown specific 
heat. Of course, this method ignores any heat transferred to or from the 
environment in the process, so efforts must be made to minimize such 
transfer. Measured values of specific heat for a few selected materials are 
given in Table 3-1.

3.3.4  Latent heat

When heat transfer results in a phase transformation, there is no change in 
temperature (as long as pressure is kept constant). For example, boiling water 
at 1.0 atm pressure occurs at 100°C, and continued heating results in continued 
boiling with no temperature increase. Therefore, the concept of heat capac-
ity does not apply to such processes. However, the amount of heat applied is 
directly proportional to the mass transformed from one phase to another, with 
the constant relating the two called latent heat L. That is,

	
L

Q
m

=
	

(3.12)

with SI units J/kg.

The value of L is different for each phase transformation. For water, the latent 
heat for melting ice at 0°C is 333 kJ/kg, and the latent heat for boiling water at 
100°C is 2260 kJ/kg. Evidently, it takes nearly seven times as much energy to 
boil water than to melt the same amount. This should be consistent with your 
experience in cooking. On the stovetop you can thaw frozen food relatively 
quickly, but you can cook noodles or rice until done without boiling away too 
much of the water.

The phase transformations described above are reversible. To freeze water you 
have to remove 333 kJ/kg. This process is done by heat transfer with the air on 
a cold day or in a refrigeration system. Similarly, condensing steam requires 

In the old (non-SI) system used in calorimetry, the calorie (cal) was used 
as a unit of heat (and other forms of energy). It was defined so that at a 
specific temperature and pressure the specific heat of water would be 
exactly 1000 cal/(kg · °C), or equivalently exactly 1 cal/(g · °C). Thus, 
if needed, the conversion between calories and joules is 1 cal = 4.186 J.
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removal of 2260 kJ/kg. A more familiar process is the evaporation of sweat on 
your skin, which removes thermal energy from your body. The latent heat for 
evaporation at body temperature 37°C is about 2420 kJ/kg.

Phase transformations will be discussed in more detail in Chapter 10.

3.3.5  The method of mixtures

At the beginning of this chapter we mentioned that Black quantified heat using 
the method of mixtures. Let us see how the first law justifies the idea of “heat 
lost equals heat gained.”

Suppose that two systems, A and B, are put in thermal contact with an adia-
batic wall surrounding both systems. For the two systems, the first law is

U U Q W

U U Q W

f
A

i
A A A

f
B

i
B B B

− = +

− = +

where subscripts i and f refer to the initial and final states and the superscripts 
A and B refer to the different systems. Adding,

U U U U Q Q W Wf
A

f
B

i
A

i
B A B A B+ + + +( )−( ) = ( )+ ( )

now U U U Uf
A

f
B

i
A

i
B+ +( )−( ) is the change in the internal energy of the compos-

ite system, and (WA + WB) is the work done on it. Hence (QA + QB) is the heat 
that flows into the composite system, which is known to be zero because this 
composite system is surrounded by an adiabatic wall. So

Q Q Q QA B A Band+ = = −0

or “heat lost by B equals heat gained by A.”

3.4  KINETIC THEORY OF GASES

Some simple but important relations for ideal gases can be obtained by apply-
ing classical mechanics to the motion of individual molecules in a gas. This 
approach is called kinetic theory and is valid because it deals with mean values 



3.4  Kinetic Theory of Gases    55

of molecular energy without going into specifics about the statistical distribu-
tion of energy, which is covered in Chapter 6.

3.4.1  Mean energy and equipartition

Consider again a gas enclosed in the piston-cylinder arrangement in Figure 2-4. 
You can show by classical mechanics (Problem 3.8) that a molecule of mass m 
and velocity component vx (toward the right) exerts a mean pressure P  on the 
piston given by PV mvx= 2  where V is the volume of gas enclosed. For a gas of N 
molecules,

PV Nmvx= 2

Using the molecular version of the ideal gas law PV = NkBT (where kB is 
Boltzmann’s constant), the mean kinetic energy associated with the velocity 
component vx is

1
2

1
2

2mv k Tx = B

There’s nothing distinctive about the x-direction in space, so the results for y 
and z must be the same, and thus the mean kinetic energy of a molecule of gas 
is K mvx= 3 1 2 2( ) or

Notice that this is just the translational energy of the gas molecule. If there 
are other forms of energy, specifically vibrational and rotational, they must be 
dealt with separately, as shown in Section 3.4.3.

Equation 3.13 is a particular example of a more general rule, called the 
equipartition theorem:

	
K k T= 3

2
B

	
(3.13)

Equipartition theorem: In thermodynamic equilibrium at tempera-
ture T, each independent quadratic degree of freedom contributes 1/2 
kBT to the mean energy of a molecule.
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In the gas just considered, the x-, y-, and z-components of the velocity 
constitute the three degrees of freedom, because they are independent of one 
another and each is quadratic (e.g., vx

2). In Section 3.4.3 you will see how the 
equipartition theorem can be applied to other systems.

3.4.2  Molecular speeds

In an ideal gas each of the three velocity components is random, and the 
distributions of velocity components and speeds are statistical problems that 
will be considered in Chapter 6. However, if one deals only with mean values, 
Equation 3.13 gives

K k T mv mv= = =3
2

1
2

1
2

2 2
B

where in the last step we have used the fact that the factors 1/2 and m are the 
same for every molecule. This result suggests that a root-mean-square speed 

be defined as v vrms = 2 , which in this case becomes

	
v

k T
m

rms
B= 3

	
(3.14)

We stress that the root-mean-square speed is merely a typical speed for a gas 
molecule at temperature T, and that the statistical distribution of speeds is 
quite significant. Further, note that in statistics v v2 2≠ ( ) , so the root-mean-
square speed is not simply the square of the mean speed.

3.4.3  Real gases

The most common gases in the atmosphere are the diatomic gases N2 and 
O2, followed by the monatomic gas argon that constitutes less than 1% of the 
atmosphere. Equation 3.14 gives the root mean square speeds for all these 

For gases under ordinary conditions, the root-mean-square speed is sur-
prisingly high. For example, for nitrogen gas (N2, with molecular mass 28.0 
u) at room temperature T = 20°C = 293 K, the root-mean-square speed is 
511 m/s.
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gases, because the analysis leading to that result considered only translational 
motion.

However, if you want to consider all the thermal energy contained in diatomic 
gases, rotational modes of energy must also be considered. Think of the 
two atoms in the molecule as connected by a thin rod. The molecule is free to 
spin about either of the two axes perpendicular to the connecting rod. This 
adds two rotational degrees of freedom to the three translational degrees for a 
total of five. By the equipartition theorem, the total thermal energy of a 
diatomic gas molecule is then 5 × 1/2 kBT = 5/2 kBT.

The results just quoted are easily verified by measuring the gas’s heat 
capacity. By Equation 3.6, a diatomic gas’s heat capacity is CV = 5/2 kB per 
molecule, which is conveniently expressed as a molar specific heat (i.e., for 
one mole or NA molecules) cV = 5/2 NA kB = 5/2 R. This has numerical value 
cV = 5/2 R = 20.8 J/(K · mol), in good agreement with measured values. On the 
other hand, monatomic gases such as argon and helium should have molar 
heat capacity cV = 3/2 R = 12.5 J/(K · mol) according to the equipartition theo-
rem, and experimental measurements verify this.

It becomes problematic to apply the equipartition theorem to more com-
plex gas molecules, such as CO2 and H2O. With three atoms in a molecule, 
the nature of the bonds is important because they undergo some flex-
ing and bending, which can absorb energy and thereby affect specific heat 
measurements.

3.4.4  Solids

The equipartition theorem also applies well to some solids such as copper, in 
which the atoms form a cubic lattice. In that case each atom can be treated 

The third axis of rotation, along the line connecting the two atoms, is not 
counted as a degree of freedom in this analysis. This is for a fairly subtle 
reason. The quantum energy of a rotational state is inversely proportional 
to the rotational inertia. With most of the atom’s mass concentrated in 
the small atomic nucleus, the rotational inertia along this axis is much 
smaller than the other two, so the energy needed to excite that rotational 
state is too large to be realized at room temperature.
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as a harmonic oscillator in each of three directions. A harmonic oscillator 
has two degrees of freedom, one for kinetic energy and one for potential 
energy. According to the virial theorem in classical mechanics, the kinetic 
and potential energy contribute equal amounts to the net energy. Thus the 
three directions times two degrees of freedom yield a total of six degrees 
of freedom, with a predicted molar heat capacity, cV = 6 × 1/2 R = 3R. At 
low temperatures the measured value is quite close to this. As temperature 
increases, there is an increasing contribution to the heat capacity from the 
conduction electrons in copper, reaching about 0.02R at room temperature. 
This is due to quantum mechanical effects, where the conduction electrons 
must be treated by quantum (Fermi-Dirac) statistics. This effect is considered 
in Chapter 13.

3.5  IDEAL GASES AND THE FIRST LAW

Another set of simple relations for ideal gases can be obtained from the first 
law of thermodynamics. An ideal gas is one that obeys the equation of state 
(the ideal gas law) PV = nRT. It is shown in Chapter 8 that, as a consequence of 
this equation of state, the internal energy is a function of temperature alone. 
This is consistent with the result from kinetic theory, shown in Section 3.4. 
By writing

	 U U T= ( ) 	 (3.15)

three important results for an ideal gas will follow.

3.5.1  Free expansion

Free expansion was introduced in Section 2.2.2, where it was shown that no 
external work against the surroundings is performed when a gas expands 
irreversibly into a larger chamber. Suppose the walls are adiabatic, so no heat 
enters the system. As W = 0 and Q = 0, the first law shows that Ui = Uf, where 
the subscripts i and f denote the initial and final equilibrium states. Equation 
3.15 implies that Ti = Tf, and thus there is no temperature change between the 
end states. This should make intuitive sense, given the connection between 
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temperature and molecular speeds implied by kinetic theory (Section 3.4). 
That is, free expansion does not change any of the molecular speeds, so it 
should not affect temperature.

In 1843, Joule attempted to measure the temperature change in the free 
expansion of air. He was unable to detect any temperature change, within 
experimental error. With modern precision equipment, experimenters are able 
to measure only very small temperature changes; thus air behaves approxi-
mately as an ideal gas at normal temperatures. It is found that all known 
gases cool slightly on undergoing a free expansion. This is consistent with the 
kinetic theory idea that temperature is associated with the kinetic energy of 
the molecules. If the gas expands, then the intermolecular attraction potential 
energy goes up as the molecules get further apart. As the total internal energy 
U is constant for the free expansion, this means that the kinetic energy, and 
therefore the temperature, goes down.

The quantity (∂T/∂V)U is a measure of the cooling effect occurring in a free 
expansion and is known as the Joule coefficient μj. In Chapter 8 you will see 
how thermodynamics helps to derive an expression for μj from the equation of 
state, even though free expansion is an irreversible process.

3.5.2  CP – CV

Consider n moles of an ideal gas. By Equation 3.3, đQ = dU + PdV for 
an infinitesimal reversible process. The constant-volume heat capac-
ity is CV = (∂U/∂T)V and, for the special case of an ideal gas where U = U (T), 
this becomes

C
dU
dT

dU C dTV V= =or idealgas( )

In other words, in the special case in which U = U (T), the partial derivative 
in CV = (∂U/∂T)V may be replaced by the ordinary derivative in CV = dU/dT, or 
dU = CV dT.

Using this result, the infinitesimal form of the first law becomes

CQ C dT P dVV= +
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Now consider a constant-pressure process. Dividing all through by dT and 
taking the partial derivative at constant P

CQ
dT

C C P
V
T

P
P V

P

= = + ∂
∂







Differentiating PV = nRT with respect to temperature, P(∂V/∂T)P = nR, and it 
follows that

This relation between CP and CV is very simple for an ideal gas; another result 
for CP − CV is derived for a general system in Chapter 8.

Equation 3.16 is confirmed by experimental measurements. Recall from Section 
3.4.3 that in theory specific heat cV = 3/2 R for monatomic gases and cV = 5/2 R 
for diatomic gases. According to Equation 3.16, the molar specific heats cV and 
cP are related by cP = cV + R. Therefore, theory predicts cP = 5/2 R for monatomic 
gases and cP = 7/2 R for diatomic gases. Measured values are very close to these 
predictions.

3.5.3  The equation of an adiabat

Throughout an isothermal reversible expansion at temperature T, the pres-
sure  and volume of an ideal gas are always related by PV = nRT. There is a 
very simple relation between P and V if the expansion is performed both 
adiabatically and reversibly. From Equation 3.3

CQ dU P dV= + ( )reversible

so

0 = +dU P dV ( )reversible and adiabatic

or

0 = +C dT PdVV

because dU = CV dT.

	 C  C nRP V= + 	 (3.16)
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But the equation of state PV = nRT holds at all points in this expansion, 
although T is no longer constant as it was for isothermal expansion. Therefore 
one may substitute P = nRT/V to obtain

0 = +C dT
nRT

V
dVV

or

0 = +C
T

dT
nR
V

dVV

Integrating

C T nR VV ln ln a constant+ = *

Dividing through by CV and using Equation 3.16,

ln 1 ln a constantT V+ − =( ) *γ

where the ratio of the heat capacities CP/CV is written as γ, called the adiabatic 
exponent. Hence

TV γ − =1 a constant*

Using the equation of state again, the result is

	 PV γ = a constant*

	 (3.17)

which is the equation for a reversible adiabat.

It is a simple matter to show by differentiation that the slope of the adiabat 
at a particular point (P, V) on the PV diagram is γ times that of the isotherm 
through that point. The result of the previous section shows that γ > 1, because 
nR is a positive number, and so the adiabat has the steeper slope. This is 
shown in Figure 3-4.

* The constants here are all different.
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3.5.4  Nonideal gases

In a real gas, there are intermolecular attractions. Additionally, the molecules 
themselves occupy a finite volume. The equation of state therefore has to 
be modified from the simple PV = nRT for an ideal gas. The most successful 
modification is that of van der Waals. His equation is

	 ( )( )P a V nb nRT+ − =/ 2υ 	 (3.18)

where the first factor on the left contains the modification a/υ2 to the pres-
sure due to the molecular interactions, and the second factor contains the 
modification nb to the volume to take into account the molecular volume 
(a and b are constants). The reader is referred to other texts for a discus-
sion of the a/υ2 term. Notice that the first factor contains the molar volume 
υ = V/n and not the total volume V; otherwise, the left-hand side would not 
be extensive.

An adiabat (noun) is the curve that describes an adiabatic (adjective) 
process.

P

V

Isotherm

Adiabat

Figure 3-4  The adiabat for an ideal gas has a slope γ times that for the isotherm at each 
point on the PV diagram.
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3.6  THE JOULE–KELVIN EFFECT

Although general flow processes are discussed in the next section, and again 
in Chapter 8, it is instructive to formulate some of the basic ideas at this stage. 
The effect is used in the liquefaction of gases and is often called the throttling 
process, for reasons that will be immediately obvious.

The process is illustrated in Figure 3-5a. Gas is forced at a constant pres-
sure and at a steady rate through a small hole, or series of holes, to emerge at 
a constant pressure. The series of small holes is usually in the form of a plug 
of cotton, wool, or similar material. There is a finite pressure drop across the 
plug, making the process irreversible. The walls of the chamber are thermally 
insulating, and so the process is also adiabatic.

In order to analyze this process, consider a given mass of gas as it passes through 
the plug. Imagine this gas as shown in Figure 3-5b being initially contained in 
a cylinder in the equilibrium state (Pi, Vi) and slowly being forced at constant 
pressure Pi though the plug. As the gas emerges from the plug at the pressure 
Pf, imagine it pushing back the piston of another cylinder until all the gas has 
passed through the plug. This creates the situation as in Figure  3-5c, with 

Porous plug

Adiabatic wall

PfTf

Pf

PiTi

Pi + dP

Pf – dPPi

PiTi
Vi

PfTf
Vf

(a)

(b)

(c)

Figure 3-5  A schematic representation of the throttling process.
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the gas finally in the equilibrium state (Pf, Vf). It is important to realize that 
this device with the pistons is only to help us with our analysis; the real pro-
cess is not a “one-shot” one as here, but rather is a steady flow process as in 
Figure 3-5a.

Because there is no finite pressure drop across the left-hand piston, and 
as there is no friction, the work done in forcing the gas through the plug is

	

W PdV PV
V

= − =∫ i i i

i

0

	

Although the whole process is irreversible, it has been possible to use the 
−PdV expression for the work done because the argument used in the original 
derivation in Chapter 2 is valid here—namely that the external force necessary 
to push in the piston is still PA. The only finite pressure drop is across the plug 
and not across the piston. Similarly, the work done by the gas on expanding 
into the right-hand cylinder is PfVf.

Applying the first law to the gas,

	 U U PV PVf i i i f f− = + −0 	

because no heat enters. So

	 U PV U PVi i i f f f+ = + 	

or

	
H Hi f Iselthalpic process= ( )

	
(3.19)

The throttling process is thus an isenthalpic one.

The quantity (∂T/∂P)H is a measure of the temperature change occurring 
in a throttling process and is known as the Joule–Kelvin coefficient μJK. 
In  Chapter 8 an argument is given using use thermodynamics to calcu-
late μJK even though the process is irreversible. Unlike the Joule expansion, 
where there is always cooling, both heating and cooling can occur in the 
throttling process.
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3.7  STEADY FLOW PROCESS—THE TURBINE

This chapter concludes with a brief discussion of steady flow processes, which 
are of particular importance in engineering. A steady flow is the flow of a fluid 
at a constant rate through a device so that some of the internal energy of the 
fluid is transformed into mechanical work. The device, for example, might 
be an air compressor, a refrigerator, or a turbine. Figure 3-6 shows a general 
steady flow process.

As in the throttling process, it is useful to focus attention on a unit mass of the 
fluid flowing through the device. The unit mass is considered to be the system. 
The relevant parameters, which are specific values for the extensive quantities 
in that they refer to unit mass, are listed in Table 3-2. (In this case V is used 
rather than υ for specific volume, so it is not confused with the flow velocity v.)

In order to determine the work done by the fluid, imagine the unit mass of 
fluid being contained in a cylinder and being forced at the constant pressure 

Table 3-2  Relevant Parameters in a Steady Flow Device

Entering device Leaving device

Pressure P1 P2

Volume V1 V2

Height z1 z2

Flow velocity v1 v2

Internal energy u1 u2

v2

v1

z2 – z1

u2, V2, P2

q

w

u1, V1, P1

Figure 3-6  A schematic representation of a general steady flow process.
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P1 into the device, just as in the throttling process. The work done on the 
fluid is then P1V1, as before. Similarly the work done by the fluid on emerg-
ing from the device is P2V2. Let the device perform, in addition, the work w 
(e.g., the shaft work done by a turbine), and heat q enters the system. The 
following list summarizes all the energy changes, the work performed, and 
the heat flow:

	 1.	 The internal energy changes by u2 − u1

	 2.	 The kinetic energy changes by 
1
2

2
2

1
2v v−( )

	 3.	 The potential energy changes by g(z2 − z1)
	 4.	 The net work done on the fluid is P1V1 − P2V2 − w
	 5.	 The heat flow into the system is q

Because the bulk potential and kinetic energies are changing in this process, 
the first law is modified to

	 ∆ ∆( )KE PE bulk+ + = +U W Q 	

Substituting all these values,

	

1
2

1
2

2
2

1
2

2 1 2 1 1 1 2 2v v g z z V Vu u P P w q− + − + − = − − +( )
	

Remembering that the specific enthalpy h = u + PV, the shaft work is

	
w h h v v g z z q= − + −( )+ −( )+1 2 1

2
2
2

2 1
1
2 	

(3.20)

This is the general energy equation for steady flow.

The values for h at different temperatures and pressure are tabulated for 
different substances in engineering “heat tables.” Equation 3.20 can be used 
to compute w for different flow systems. We shall consider just two important 
constant flow processes.

3.7.1  The turbine

Although the temperature of a gas turbine is considerably higher than that of 
the surroundings, the gas flow is so rapid that only a small quantity of heat 
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is lost by each unit mass of gas, so it is reasonable to approximate q = 0. Also, 
there is usually no difference in elevation at each end. Hence, Equation 3.20 
becomes

	
w h h v v= − + −( )1 2 1

2
2
21

2 	
(3.21)

This simple result says that the work obtainable can be calculated from 
knowledge of the enthalpy and velocities of the gas entering and leaving the 
turbine.

3.7.2  Flow through a nozzle

When a gas flowing through a pipe encounters a change in the cross-sectional 
area, there is a change of gas velocity. This effect is used frequently in engi-
neering and in particular in a turbine where the gas is “thrown” onto the 
turbine blades with a high velocity. The incoming gas (steam in the case of a 
steam turbine) is speeded up by passing it through a nozzle, as in Figure 3-7. 
No  shaft work w is done, the system is assumed to be horizontal, and it is 
assumed that no heat q enters the system, as the gas flow is too rapid for this to 
be appreciable. Equation 3.20 then becomes:

	 v v h h1
2

2
2

2 12− = −( ) 	 (3.22)

which relates the velocity change to the enthalpy change.

In practice, it is customary to know the “upstream” conditions P1, T1 which 
means that h1 is known. However, if as is usual, only the “downstream” pres-
sure P2 is specified, there is insufficient information to determine h2. If the flow 
through the nozzle is assumed to be reversible as well as adiabatic and the gas 
is treated as ideal, then the downstream temperature T2 can be found from the 
adiabatic relation

v2

P2 T2

P1 T1

v1

Figure 3-7  A steady flow process through a nozzle.
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T
T

P
P

1

2

1

2

1




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= 



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−γ γ

	

This gives sufficient information to find h2 and therefore v2.

PROBLEMS

	 3.1	 Liquid is stirred at constant volume inside a container with adiabatic 
walls. The liquid and the container are regarded as the system. (a) Is 
heat being transferred to the system? (b) Is work being done on the sys-
tem? (c) What is the sign of the internal energy change of the system?

	 3.2	W ater inside a rigid cylindrical insulated tank is set into rotation and 
left to come to rest under the action of viscous forces. Regard the tank 
and the water as the system. (a) Is any work done by the system as the 
water comes to rest? (b) Is there any heat flow to or from the system? 
(c) Is there any change in the internal energy of the system?

	 3.3	 A combustion experiment is performed on a mixture of fuel and 
oxygen  contained in a constant-volume container surrounded by a 
water bath. The temperature of the water is observed to rise. Regard 
the matter inside the container as the system. (a) Has work been done 
on the system? (b) Has heat been transferred between the system and 
the surroundings? (c) What is the sign of the internal energy change of 
the system?

	 3.4	 A gas is contained in a cylinder fitted with a frictionless piston and is 
taken from state a to state b along the path acb shown in Figure 3-8. 
80 J of heat flows into the system, and the system does 30 J of work. 
(a) If instead the work done by the gas system is only 10 J along adb, how 

b

P

V

da

c

Figure 3-8  PV diagram for the processes described in Problem 3.4.
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much heat flows into the system? (b) When the system is returned from 
b to a along the curved path, the work done on the system is 20 J. What 
is the heat transfer? (c) If Ua = 0 and Ud = 40 J, find the heat absorbed in 
the processes ad and db.

	 3.5	 An electrical resistance coil, wired to the surroundings, is placed inside 
a cylinder fitted with a frictionless piston and containing an ideal gas. 
The walls of the cylinder and the piston are adiabatic. A current of 5.0 A 
is maintained through the resistance, across which there is a voltage 
drop of 100 V. The piston is opposed by a constant external force of 
5000 N. (a) At what speed must the piston move outward in order that 
there is no change in the temperature of the gas? (b) Is the electrical 
energy transferred to the gas as heat or work? (c) Suppose now that the 
walls are diathermal and the resistance coil is wrapped around the 
outside of the cylinder. Regard the system as the cylinder and the gas, 
excluding the heating coil. Is the energy transfer now heat or work?

	 3.6	T wo moles of a monatomic ideal gas are at a temperature of 300 K. 
The  gas expands reversibly and isothermally to twice its original 
volume. Calculate the work done on the gas, the heat supplied, and the 
change in the internal energy.

	 3.7	 An ideal gas is contained in a cylinder fitted with a frictionless piston at 
the pressure P and volume V. It is heated quasistatically and at constant 
volume so that its temperature is doubled, and then it is cooled at con-
stant pressure until it returns to its original temperature. Show that the 
work done on the gas is PV.

	 3.8	 Consider a single gas molecule of mass m enclosed in the piston-
cylinder arrangement in Figure 2-4. Show that if its velocity component 
to the right is vx, then it exerts an average pressure on the piston given 
by PV mvx= 2  where V is the volume of gas enclosed.

	 3.9	Y our 200-g cup of coffee is too hot to drink at 95°C. Assume coffee has 
the same thermal properties as water. (a) Suppose you want to cool the 
coffee by adding 20°C water. How much water do you need to add so 
that the mixture reaches equilibrium at 75°C? (b) Instead of water you 
use ice initially at 0°C to cool the coffee. How much ice is needed to 
bring the mixture to equilibrium at 75°C?

	 3.10	 A runner uses energy at an average rate of 15 kcal/min. Assume all the 
energy is dissipated through the cooling process of evaporating sweat 
on the skin. How much water does the runner need to consume during 
the course of a 3.0-hour marathon race? Assess whether your result is 
reasonable.

	 3.11	O n a hot day you want to cool 0.5 L of tap water initially at 25°C 
by  adding  ice. (a) If you add 45 g of ice, what is the final equilibrium 
temperature of the mixture? (b) How much ice would you need to add 
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to the original sample of water (0.5 L at 25°C) so that the last of the ice 
melts as the mixture reaches 0°C?

	 3.12	 A 2.5-kg piece of hot lead at 95°C is dropped from a 35-m tower into 10 L 
of water at 20°C. Compute separately the temperature rise in the water 
(once equilibrium is reached) due to the lead’s (a) thermal properties 
and (b) gravitational energy. (c) Compare and assess the results in 
(a) and (b).

	 3.13	Y ou have a pure metal that is unknown except for the fact that 
it happens to be among those listed in Table 3-1. A 36.7-g piece of this 
metal at 50.0°C is placed in a calorimeter containing 150 g of water 
initially at 10.0°C. The final equilibrium temperature in the calorimeter 
is 12.0°C. What is the metal?

	 3.14	 2.5 moles of a monatomic ideal gas is initially at T = 300 K and 
P = 1.0 atm. The gas is then taken on a three-step cycle: (i) The pressure 
and volume increase in such a way that P is proportional to V,  until 
P = 2.0 atm; (ii) pressure is reduced at constant volume to 1.0 atm; and 
(iii)  volume is reduced at constant pressure until the initial state is 
reached. (a) Find the internal energy and volume occupied by the gas 
in its initial state. (b) Find ΔU, W, and Q for each step in the process. 
(c) Find the net values of ΔU, W, and Q for the entire cycle. (d) Explain 
why the signs on your answers in (c) make sense.

	 3.15	 Find the change in the internal energy of one mole of a monatomic ideal 
gas in an isobaric expansion at 1 atm from a volume of 5 m3 to a volume 
of 10 m3. (Note that γ for a monatomic ideal gas is 5/3.)

	 3.16	 The molar specific heat of many materials at low temperatures is 
found to obey the Debye law cV = A[T/θ]3 where A is a constant equal to 
1.94 × 103 J/(K ⋅ mol) and with the Debye temperature θ taking different 
values for different materials. For diamond it is 1860 K. (a) Evaluate cV 
at 20 K and 100 K. (b) How much heat is required to raise one mole of 
diamond from 20 K to 100 K? (c) What is the average molar specific heat 
in this range?

	 3.17	 Show that the adiabat curve for an ideal gas is steeper by a factor of 
γ than the isotherm through a point on the PV diagram.

	 3.18	 Show that the following relations hold for a reversible adiabatic 
expansion of an ideal gas:

	

TV

T
P

γ

γ

−

−

=

=

1

1 1

a constant

another constant/
	

	 The fireball of a uranium fission bomb consists of a sphere of 
gas of radius 15 m and temperature 300,000 K shortly after 
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detonation. Assuming that the expansion is adiabatic and that the 
fireball remains  spherical, estimate the radius of the ball when 
the temperature is 3000 K. (Take γ = 1.4 for air.)

	 3.19	 A gas with adiabatic exponent γ is compressed adiabatically from an 
initial state (Pi, Vi) to final state (Pf, Vf). (a) Show that the work done in 
this process is

	

W
PV V

V
=

−




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−
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
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		  (b) Evaluate the result numerically for one mole of helium gas initially 
at P = 1.0 atm and T = 300 K compressed to half its initial volume. 
(c) Compute the work done in an isothermal compression from the same 
initial point to half the initial volume. Explain the difference between 
the numerical results for work done in adiabatic and isothermal 
compression.

	 3.20	 An interstellar cloud, made up of an ideal gas, collapses with its radius 
decreasing as

	
R

t= −



10

216
13

2 3/

m
	

		  with t measured in years. The time t is taken to be zero at zero 
radius, so that t is always negative. The cloud collapses isothermally 
at 10 K until its radius reaches 1013 m. It then becomes opaque so 
that,  from then on, the collapse takes place adiabatically (γ = 5/3) 
and  reversibly. How many years does it take for the temperature to 
rise by 800 K measured from the time the cloud reaches a radius 
of 1013 m?

	 3.21	 A thick-walled insulating chamber contains n1 moles of helium gas 
at a high pressure P1 and temperature T1. The gas is allowed to leak 
out slowly to the atmosphere at a pressure P0 through a small valve. 
Show  that the  final temperature of the n2 moles of helium left in the 
chamber is
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	 (Hint: Consider the gas that is ultimately left in the chamber as your 
system.)
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	 3.22	 Calculate the work done by a van der Waals gas, with Equation 3.18 as 
the equation of state, in expanding from a volume V1 to a volume V2: 
(a) at constant pressure P (b) at constant temperature T.

	 3.23	 A magnetic salt obeys the Curie law

	

µ0

0

M
B

C
T

=
	

		  where M is the magnetization, B0 is the applied magnetic field in the 
absence of the specimen, C is a constant, and μ0 is the permeability of 
free space. The salt is magnetized isothermally from a magnetization 
M1 to M2. You may assume that the magnetization is uniform over the 
volume V of the salt. Show that the work of magnetization is

	
W

V T
C

M M= −( )µ0
2
2

1
2

2 	

	 3.24	 The infinitesimal work done in charging a cell is dW = εdZ so the rate 
of doing work is εdZ/dt = εI where I is the current supplied. A battery 
is charged by applying a current of 40 A at 12 V for 30 min. During this 
charging process the battery loses 200 kJ of heat to the surroundings. 
By how much does the internal energy of the cell change, assuming that 
there are no forms of work other than electrical work?

	 3.25	 A steam turbine takes in steam at the rate of 6000 kg/h and its power 
output is 800 kW. Neglect any heat loss from the turbine. Find the change 
in the specific enthalpy of the steam as it passes through the turbine if 
(a) the entrance and exit are at the same elevation and the entrance and 
exit velocities are negligible or (b) the entrance velocity is 50 m/s and 
the exit velocity is 200 m/s, with the outlet pipe 2.0 m above the inlet.
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Chapter 4: The Second Law 
of Thermodynamics

The first law of thermodynamics says that, in any process, energy is conserved. 
Energy may be converted from one form to another, but the total amount of 
energy is unchanged. The second law of thermodynamics imposes limits on the 
efficiency of processes that convert heat into work, such as in a steam engine 
or internal combustion engine. It allows for the definition of a thermodynamic 
temperature scale, which is independent of the nature of the thermometric 
substance. The second law also leads to the concept of entropy, which is related 
both to bulk processes and to the microscopic arrangements within a system.

Before considering the second law, it is useful to discuss Carnot cycles, which 
are central to the discussion. Then more practical cycles can be considered.

4.1  CARNOT CYCLES

At the beginning of the nineteenth century, when steam engines were relatively 
new, there was enormous interest in how their efficiency could be increased. 
An intellectual giant in this field was the French engineer Sadi Carnot, who 
in 1824 published an influential paper on how work could be produced from 
sources of heat. He knew that work could be obtained from an engine if there 
were heat sources at different temperatures—the boiler and the surrounding 
air in the case of a steam engine. He also knew that it was possible for heat to 
flow from a hot body to a cold body with no work being performed, the flow 
continuing until thermal equilibrium was attained. Carnot realized then, 
since any return to thermal equilibrium could be used to produce work, any 
return to equilibrium without the production of this work must be considered 
a loss. Thus any temperature difference may be utilized in the production of 
work, or it may be dissipated wastefully in a spontaneous flow of heat. Carnot 
concluded that, in an efficient engine, all transfers of heat should be between 
bodies of nearly equal temperature.
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With these ideas in mind, he designed an idealized engine of fundamental sig-
nificance. The cycle for the Carnot engine is depicted in Figure 4-1. Heat flows 
through a working substance, which for convenience can be assumed to be an 
ideal gas. The gas is taken through the four-step reversible cycle abcda, as shown 
in Figure 4-1. The first step ab is an isotherm at temperature T1, and to maintain 
constant temperature heat Q1 enters from a heat reservoir at T1. Step cd is an iso-
therm at a lower temperature T2, where heat Q2 is rejected to another reservoir at 
that temperature. The second and fourth steps (bc and da) are adiabats. As shown 
in Section 2.2.1, the net work W done in the cycle is the area enclosed by abcda.

It is important to emphasize that a Carnot engine operates between only two 
reservoirs and that it is reversible. Also, if a working substance is chosen other 
than an ideal gas, then the shape of the Carnot cycle is different than the one 
depicted in Figure 4-1, because the equations for the adiabats and isotherms 
are no longer PV γ = constant and PV = nRT, respectively.

4.2  EFFICIENCY OF AN ENGINE

The Carnot engine described in Section 4.1 is a specific example of a more 
general class of engines called heat engines. In general:

It is interesting to note that Carnot’s ideas were conceived using the 
caloric concept of heat, before the first law was formulated.

Adiabats

T1

d

b

c T2
Isotherms

Q2

Q1

P
a

V

W

Figure 4-1  Carnot cycle for an ideal gas.
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Any heat engine E may be represented by the schematic diagram in Figure 4-2, 
where the heat supplied Q1 and the heat rejected Q2 are not necessarily obtained 
from just two heat reservoirs as in the special case of the Carnot engine. W is 
the work done by the engine. The arrow around the edge of the block depicting 
the engine indicates that the engine works in a cycle.

To quantify the notion of engine efficiency, consider it to be a ratio of “what 
you get out to what you put in.” For the engine cycle depicted in Figure 4-2, 
the output is the work W and the input is the heat Q1 entering from the hot 
reservoir. Therefore, the efficiency (the Greek letter η) is

	
η = W

Q1 	

Note that efficiency η is a dimensionless quantity that must be less than 1, 
because the heat Q2 expelled to the cold reservoir is not available to do work, 
and therefore W < Q1.

A heat engine is an engine that uses the flow of heat from a higher-
temperature reservoir T1 to a lower-temperature reservoir T2 to 
do work.

Hot reservoir
at T1

Cold reservoir
at T2

E W

Q1

Q2

Figure 4-2  Schematic representation of an engine working in a cycle. The efficiency is 
η = W/Q1 = 1 − Q2/Q1.



76    Chapter 4: The Second Law of Thermodynamics

Applying the first law to the working substance in the engine,

	 ∆U Q Q W= − −1 2 	

This statement of the first law respects the sign convention where heat into the 
system and the work done on the system are both counted positively. For an 
entire cycle the working substance is unchanged. Therefore, ΔU = 0, and the 
first law becomes

	 W Q Q= −1 2 	

Therefore, the engine’s efficiency is η = W/Q1 = (Q1 − Q2)/Q1 or

	

η = −



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1 2

1

Q
Q

	

(4.1)

4.3 � STATEMENTS OF THE SECOND 
LAW OF THERMODYNAMICS

There are two statements of the second law of thermodynamics that are both 
based on general experience and observations about how real engines work. 
They were each formulated in the 1850s by Clausius and Kelvin, but the lat-
ter was subsequently modified by Planck. (Rudolf Clausius was a German 
physicist. The person generally referred to as “Kelvin” was William Thomson, 
honored late in life with the title Lord Kelvin. Max Planck was a German 
physicist who worked in the late nineteenth and well into the twentieth 
century.) After stating both forms of the second law, we show that the two 
statements are equivalent.

It appears that the strategy for making a more efficient engine is to 
make the ratio Q2/Q1 as small as possible. You might imagine that Q2/Q1 
depends somehow on the ratio of temperatures T2/T1, and therefore a 
more efficient engine would be one in which T2/T1 is also small. That is 
generally true, but this cannot be stated as a rule, because the exact con-
nection between heat and temperature depends on the type of engine. 
The connections between heat and temperature in a heat engine are 
explored later in this chapter.
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4.3.1  Kelvin–Planck statement

Schematically this statement is represented in Figure 4-3a. The second law 
implies that some heat must also be rejected by the device to a body at a 
lower temperature, as in the heat engine in Figure 4-2. Otherwise, as can 
be seen from Equation 4.1, one could have an engine with 100% efficiency. 
If the Kelvin statement were untrue, a number of (impossible) consequences 
would result. For example, you could drive a ship across the sea just by 
extracting heat from the sea and converting it entirely into work. Electric 
lights could be lit using thermal energy from the surrounding air. In short, 
one could construct a so-called perpetual-motion machine (or perpetuum 
mobile). But this cannot be done, because the Kelvin statement seems to be 
valid in general.

From this point we adopt the common practice of referring to the Kelvin–
Planck statement simply as the Kelvin statement.

Kelvin–Planck statement of the second law: It is impossible to con-
struct a device that, operating in a cycle, will produce no other effect 
other than the extraction of heat from a single body at a uniform tem-
perature and produce an equivalent amount of work.

Hot body
(a) (b)

Not allowed Not allowed

Kelvin ClausiusW = Q

Q

Hot body

Cold body

R

Q

Q

Cold body

Figure 4-3  (a) Schematic representation of the Kelvin–Planck statement of the second 
law. (b) Schematic representation of the Clausius statement.
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There are some key words and phrases in this statement that need further 
discussion.

	 a.	 Cycle requires that the state of the working substance is the same at the 
start and end of the process, although it may change anywhere between 
these end points. In other words, there is no net change in the state of 
the working system. Many processes can be thought of that convert heat 
completely into work, but in all of them there is a net change in the state 
of the working system. For example, one could heat one mole of an ideal 
gas and allow it to expand quasistatically and isothermally (by keeping 
it in contact with a thermal reservoir) from a volume V1 to V2 > V1 as in 
Figure 4-4. The work done by the gas is

	

W PdV RT
V

dV RT
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= = = 
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		  Because the expansion is isothermal, T1 = T2 and so ΔU = 0. The first law 
then shows that Q = W > 0 where Q is the net heat supplied, and there is 
a 100% conversion of heat into work. However there is no violation of the 
second law here, because there has been a net change in the state of the 
ideal gas working system.

	 b.	 No effect other than says that, in addition to the rejection of heat to a body 
at a lower temperature, the only other effect on the surroundings is via 
the work delivered by the engine. This means that the bodies delivering 
and accepting heat to and from the engine must do so without delivering 
any work. In other words, their volumes must remain constant if only P-V 
work is being considered. Such a body that delivers its heat with no work 
is sometimes called a source of heat.

	 c.	 Heat must be extracted from a single body. Suppose that heat Ql + Q2 was 
supplied from two bodies: Ql from a body at T1 and Q2 from a body at T2 

Diathermal

Q Reservoir at T

T

V1 → V2

Figure 4-4  Isothermal expansion of an ideal gas. Although W = Q, this does not violate 
the second law.
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with T1 > T2. The cyclical engine delivers an amount of work W = Q1 + Q2 
as shown in Figure 4-5, and there appears to be a complete conversion 
of heat into work in a cyclical process with no heat being rejected to a 
reservoir at a lower temperature.

	 However, there is no violation of the second law here, because Q2 
could be negative with W = |Q1| − |Q2|. This possible type of engine is 
excluded from the Kelvin statement by specifying a single body.

It should be remarked here that, were one to run an engine with bodies as the 
sources of heat rather than reservoirs, it would eventually run down as the 
bodies approach each other in temperature. The result would be a less useful 
engine; however, the second law as given above applies to both situations.

The Kelvin statement of the second law is sometimes given in the very concise 
form:

A few moments thought will show that the word only ensures that all the 
points made earlier are covered. The Kelvin statement was presented in the 
first more extended form, because its significance in the concise form is too 
easily overlooked.

A process whose only effect is the complete conversion of heat into 
work is impossible.

Body 1
T1

Body 2
T2

Q2Q1

E W

Figure 4-5  Two bodies supplying heat to an engine do not violate the Kelvin statement of 
the second law, because Q2 could be negative.
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4.3.2  The Clausius statement

Schematically, this statement is represented in Figure 4-3b. What this form 
of  the second law tells us is that work must be performed if heat is to be 
transferred from a colder to a hotter body. Were this not so, you could heat your 
house just by cooling the outside air at no cost, with no work having to be done. 
Further, heat extracted from a colder body could be used to run a heat engine, 
and this would result in another perpetuum mobile.

A refrigerator, designated by R in Figure 4-3b, is an engine that extracts 
heat from a cold body and delivers heat to a hot body when work is performed 
on the engine. The operation and efficiency of real refrigerators will be 
discussed in Section 4.6.

There is one final point that should be discussed. The Kelvin statement of the 
second law refers to the impossibility of heat being extracted from a hot body 
and the performance of an equivalent amount of work, with there being no 
net change in the state of the working system. It does not forbid the opposite 
situation depicted in Figure 4-6, where all the work W done on an unchanged 

Clausius statement of the second law: It is impossible to construct a 
device that, operating in a cycle, produces no effect other than the 
transfer of heat from a colder to a hotter body.

The hypothetical refrigerator in Figure 4-3b is not allowed because there 
is no external source of energy supplied to R. A real refrigerator depends 
on such energy and therefore is allowed by the Clausius statement of the 
second law.

System
unchanged

W

Q = W

Figure 4-6  Work can be converted completely into heat, with no change in the working 
substance.
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system may be converted completely into heat. Rumford’s experiment with a 
blunt boring tool is an example of such a total conversion of work into heat. 
Another example is the operation of a resistive electrical circuit in which no 
work is performed.

4.3.3 � Equivalence of Kelvin and Clausius statements

The two statements of the second law of thermodynamics are shown to be 
equivalent by showing that the falsity of each implies the falsity of the other.

Suppose first that the Kelvin statement is untrue. This means that one can have 
an engine E that takes Q1 from a hot body and delivers work W = Q1 in one cycle. 
Let this engine drive a refrigerator R as shown in Figure 4-7a. Now adjust the size 
of the working cycles so that W is sufficient work to drive the refrigerator through 
one cycle. Suppose the refrigerator extracts heat Q2 from the cold body. Then the 
heat delivered by it to the hot body is Q2 + W or Ql + Q2. It is useful to regard the 
engine and the refrigerator as the composite engine enclosed by the dashed line 
as shown in Figure 4-7b. This composite engine (strictly a refrigerator) extracts Q2 
from the cold body and delivers a net amount of heat Q2 + Q1 − Q1 = Q2 to the hot 
body, but no work is done. Hence, there is a violation of the Clausius statement.

Suppose now that the Clausius statement is untrue. This means that you can 
have a refrigerator that extracts heat Q2 from a cold body and delivers the same 
heat Q2 to a hot body in one cycle, with no work having to be done. Now let 

Hot body

(a)

Cold body

RE
W = Q1

Q2 + Q1

Q2

Q1 

Hot body

Composite
refrigerator

(b)

Cold body

Q2

Q2

Figure 4-7  If the Kelvin statement of the second law is false, this implies that the Clausius 
statement is also false. The arrangement illustrated here is used to prove this.
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an engine operate between the same two bodies. Adjust the size of its work-
ing cycle so that in one cycle it extracts heat Q1 from the hot body, gives up 
the same heat Q2 to the cold body as was extracted by the refrigerator, and 
so delivers the work W = Ql − Q2. This is depicted in Figure 4-8a. The engine 
and the refrigerator may be regarded as the composite engine enclosed by 
the dashed line, as shown in Figure 4-8b, which takes in heat Ql − Q2 from the 
hot body and delivers the same amount of work. Hence, there is a violation of 
the Kelvin statement. This proves the equivalence of the two statements.

4.4  CARNOT’S THEOREM

In the introduction to this chapter, you saw that Carnot had argued that effi-
cient engines must be those operating as nearly as possible to a Carnot cycle. 
The Clausius statement of the second law leads directly to a theorem that 
relates the Carnot cycle to other heat-engine cycles.

Hot body

(a)

Cold body

ER

Q1

Q2Q2

Q2 

Hot body

Composite
engine

(b)

Cold body

Q1 – Q2

W = Q1 – Q2W = Q1 – Q2

Figure 4-8  If the Clausius statement of the second law is false, this implies that the Kelvin 
statement is also false. The arrangement illustrated here is used to prove this.

Carnot’s theorem: No engine operating between two reservoirs can 
be more efficient than a Carnot engine operating between those same 
two reservoirs.
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4.4.1  Proof of Carnot’s theorem

To prove this, imagine that such a hypothetical engine E′ does exist with an 
efficiency η′ larger than the Carnot efficiency ηc. As shown in Figure 4-9a, this 
engine extracts heat ′Q1  from the hot reservoir, performs work W′, and delivers 
heat ′ = ′ − ′Q Q W2 1( )  to the cold reservoir.

Now operate a Carnot engine, denoted by C and with efficiency ηc, between 
the same two reservoirs. The Carnot engine extracts heat Ql, expels heat Q2, 
and delivers work W. Adjust the size of the cycle to make the Carnot engine 
perform the same amount of work as the hypothetical engine E′, so W′ = W. For 
the Carnot engine Q2 = Q1 − W. Because the hypothetical engine is assumed to 
be more efficient than the Carnot engine,

	

′
′

>W
Q

W
Q1 1 	

But W′ = W, so

	 Q Q1 1> ′ 	

A Carnot engine is a reversible engine, so it may be driven backward as a 
refrigerator as shown in Figure 4-9b. The hypothetical engine and the 

Hot reservoir

Composite
refrigerator

(b)

Cold reservoir

CE ′
W

Q1

Q2 = Q1 – WQ′2  = Q′1 – WQ′2 

Q′1 

Hot reservoir

(a)

Cold reservoir

CE ′
W ′

Q1

Q2 = Q1 – W

W

Q′1 

Figure 4-9  Arrangement used to prove Carnot’s theorem: No engine working between 
two reservoirs can be more efficient that a Carnot engine working between the same two 
reservoirs.
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Carnot refrigerator together act as a composite device, shown by the dashed 
line, which extracts positive heat ( )Q Q1 1− ′  from the cold reservoir and deliv-
ers the same heat to the hot reservoir with no external work being required. 
But reservoirs are just large bodies in which the temperature is unchanged 
upon the addition of heat. This means that there is a violation of the Clausius 
statement. Therefore the engine E′ cannot exist, and the original assumption 
that η′ > ηc is incorrect. It is permitted to have η′ = ηc, at most. In that case 
the composite refrigerator simply transfers no net heat for no work, which is 
allowed.

We conclude that, for any real engine

	 η η≤ C 	

which proves the theorem.

4.4.2  Corollary to Carnot’s theorem

It follows from Carnot’s theorem that:

To prove this statement, imagine two Carnot engines C and C′ operating 
between the same two reservoirs, and let the size of the working cycles be 
adjusted so that they each deliver the same amount of work.

Let C run C′ backward as in Figure 4-10. It follows from the argument given 
in Section 4.4.1 that

	 η η≤ ′C 	

If C′ now runs C backward,

	 ′ ≤η ηC 	

All Carnot engines operating between the same two reservoirs have 
the same efficiency.
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Therefore,

	
η ηC C= ′

	

which proves the assertion.

4.5 � THE THERMODYNAMIC 
TEMPERATURE SCALE

You have just seen that the efficiency of a Carnot engine operating between 
the two reservoirs is independent of the nature of the working substance 
and  can depend only on the temperatures of the reservoirs. This gives a 
means of defining a temperature scale that is independent of any particular 
material.

4.5.1  Temperature scale from Carnot engines

Define the thermodynamic temperature T so that T1 and T2 for the two 
reservoirs in a Carnot engine are related as

	

ηC
1 2

1

2

1

1= − = −T T
T

T
T

	
(4.2)

Hot reservoir

Cold reservoir

Q1

Q2

Q′1 

C ′

Q′2 

WC

Figure 4-10  Arrangement used to prove that all Carnot engines operating between the 
same two reservoirs have the same efficiency.
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Comparing this with Equation 4.1,

	

T
T

Q
Q

1

2

1

2

Carnot= ( )

	
(4.3)

where the Carnot in parentheses emphasizes that this definition holds only for 
a Carnot engine. Note that consistent with Equation 4.1 the heat flow Q1 in and 
the heat flow Q2 out are both taken to be positive numbers.

Figure 4-11 helps illustrate why Equation 4.3 gives a sensible definition for a 
scale of temperature. The Carnot engine C12 operates between the reservoirs at 
T1 and T2. For this engine, Equation 4.3 gives

	

T
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Q
Q
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2

1

2

=
	

(4.4)

Suppose a second Carnot engine C23 operates between the reservoir at T2 and 
a third reservoir at T3. Let C23 absorb the same amount of heat Q2 from the 

Composite
engine C13

W12

T1

T2

Q1

Q2

Q3

Q2

C12

C23

T3

W23

Figure 4-11  Thermodynamic temperature scale, as defined by Equation 4.3, is consistent 
with the arrangement illustrated here.
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reservoir at T2 as was rejected to that reservoir by C12. When the two engines 
operate together, the reservoir at T2 is thus unchanged. Equation 4.3 gives

	

T
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(4.5)

Multiplying Equation 4.4 by Equation 4.5,

	

T
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which does not involve the intermediate temperature T2. As the reservoir at T2 
is unchanged, you may consider the two engines C12 and C23, acting together, 
to be a composite Carnot engine C13 operating between the two reservoirs at T1 
and T3. This composite engine is denoted by the dashed line in Figure 4-11. The 
application of Equation 4.3 again shows that the previous relation is precisely 
the one that holds for this composite Carnot engine. It follows that, by taking a 
whole series of Carnot engines, any range of temperatures may be defined in a 
self-consistent way.

This temperature scale is independent of the choice of working substance, 
which was one of the objectives in the discussion of scales of temperature in 
Chapter 1. The thermodynamic scale of temperature will now be shown to be 
identical to the familiar ideal gas scale.

4.5.2 � Equivalence of thermodynamic 
and ideal gas scales

Until now, we have used the symbol T for absolute temperature as defined on 
the ideal gas scale (Chapter 1). In this section, until the two are proved to be 
identical, the symbol Tg will be the gas scale temperature and T the thermody-
namic temperature, as just defined.

Consider a Carnot engine, with an ideal gas as the working substance, 
operating between the two reservoirs at the ideal gas scale temperatures 
Tg1 and Tg2. Follow the operating cycle abcda shown in Figure 4-12. For 
the isotherm bc, the empirical equation of state involving the gas scale 
temperature Tg1 is

	 PV nRT= g1 	 (4.6)
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The first law gives for an infinitesimal part of this reversible process

	 CQ dU P dV P dV= + = 	 (4.7)

where the last equality is true because the temperature is constant, making 
dU = 0. The heat Q1 entering the engine in this portion of the cycle is
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(4.8)

Q1 is positive if Vc > Vb, which is consistent with the idea that heat enters the 
engine in this portion of the cycle. Similarly, the heat entering the engine along 
the da isotherm part of the cycle is nRT V Vg a d2 ln( / ). This is negative if Va < Vd, 
which means that heat flows out of the engine. However, positive Q2 has been 
defined as the heat flow out of the engine, so
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(4.9)
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Figure 4-12  A Carnot cycle with an ideal gas as the working substance. This figure is 
used to show that the ideal gas scale temperature is identical to the thermodynamic 
temperature T.
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Dividing Equation 4.8 by Equation 4.9,
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But ab and cd are adiabats where TgV γ−1 = constant, holds so:

	 T V T Vg c
1

g d
1

1 2 cd adiabatγ γ− −= ( ) 	 (4.11)

	 T V T Vg b
1

g a
1

1 2 ab adiabatγ γ− −= ( ) 	 (4.12)

Dividing Equation 4.11 by Equation 4.12,

	

V
V

V
V

c

b

d

a

=
	

or

	
ln lnc

b

d

a

V
V

V
V





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= 



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Substituting this in Equation 4.10,

	

T
T

T

T
1

2
= 1

2

g

g 	

This means that

	 T Tg = ε 	

where ε is a constant. Because all temperature scales agree at the fixed point of 
273.16 K, the constant ε must be unity. Therefore,

	
T Tg ≡

	
(4.13)

That is,

the thermodynamic and the ideal gas scales of temperature are 
identical.
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4.6  ENGINES AND REFRIGERATORS

An example of a real engine will be illustrated in Section 4.6.4, but it is instruc-
tive to think first about the efficiency of an engine based on the Carnot cycle. 
This has a theoretical use in that it gives an upper limit, by Carnot’s theorem, 
for the efficiency of any possible engine that might be designed.

4.6.1  Efficiency of a heat engine

A Carnot engine, such as the one depicted in Figure 4-1, has efficiency

	
ηC

2

1

2

1

1= − = −1
Q
Q

T
T 	

(4.14)

It is a simple matter to calculate the efficiency, knowing T1 and T2. For example, 
consider a steam engine that operates between a maximum steam tempera-
ture of 500°C (or 773 K) and an ambient temperature of 20°C (or 293 K). Then 
by Equation 4.14 the Carnot efficiency is

	
ηC

T
T

= − = − =1 1 0 622

1

293K
773K

.
	

Real steam engines, such as in a fossil-fuel driven power plant, typically have 
efficiencies of about 0.4. The Carnot efficiency is a significant overestimate of 
efficiency for most real engines.

The reason for this difference is that a real steam engine (or any practical 
engine) operates nothing like the Carnot cycle described in Section 4.1. In a 
real heat engine, there is no attempt to set up the isothermal and adiabatic 
steps shown in Figure 4-1. Further, any device that operates at a high tem-
perature invariably loses energy to its environment, despite efforts to provide 
insulation barriers.

It is interesting to note that the Carnot engine’s efficiency would be 100% were 
it possible to obtain a lower temperature reservoir at absolute zero. However, 
this is forbidden by the third law (Chapter 12). One might argue then that a 
good strategy for increasing efficiency would be to use a refrigeration system 
to create a low-temperature reservoir with much less than ambient tempera-
ture, say 100 K or lower. The counter-argument against this strategy is that 
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there is an energy cost to refrigerate, a cost that as you will see in Section 4.6.2 
increases as refrigeration temperature gets lower. This offsets any gain 
obtained by increasing a heat engine’s theoretical efficiency.

4.6.2  Refrigerators and COP

Imagine now that the Carnot engine is run backward, as in Figure 4-13, 
to act as a refrigerator. In keeping with the concept of efficiency as a ratio 
of effective output to input, the “efficiency” ηC

R  of a refrigerator is the heat 
extracted from the cold reservoir divided by the work input. So as not to con-
fuse this with the efficiency of a heat engine, it is customary to drop the word 
efficiency and instead refer to ηC

R  as the coefficient of performance, or simply 
COP. For a Carnot refrigerator,

	

ηC
R = =

−
=

−
Q
W

Q
Q Q

T
T T

2 2

1 2

2

1 2 	
(4.15)

Although the Carnot efficiency ηC is a useful theoretical tool, a Carnot 
engine would never be practical for delivering work. Apart from the 
difficulty in setting up the required isothermal and adiabatic steps, heat 
flow in an isothermal process is painfully slow. If you want a machine 
that generates significant electrical energy or powers a vehicle of some 
kind, energy must be available at a desirably high rate. This is beyond the 
ability of a Carnot engine.

Hot reservoir
at T1

Cold reservoir
at T2

C W = Q1 – Q2

Q1

Q2

Figure 4-13  A Carnot refrigerator.
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In this case W is the energy input into the device, normally electrical energy 
for a household refrigerator or air conditioner.

For example, a household refrigerator in a 20°C room (293 K) might maintain 
a refrigerator compartment at 3°C (276 K). For this system the Carnot model 
predicts a maximum COP ηC

R of about 16. However, for the freezer compart-
ment maintained at −18°C (255 K), the maximum COP is only about 6.7. Real 
household refrigerators have coefficients of performance of about 4 or 5, which 
as expected is less than the theoretical maximum.

4.6.3  Heat pumps

In a refrigerator or air conditioner, Q1 is the waste heat delivered to the envi-
ronment. You can easily feel the warm air expelled from a refrigerator. But in 
an important application called a heat pump, Q1 is not wasted but rather used 
to maintain a warm environment, for example heating a home on a cold day.

For a heat pump the schematic cycle is the same as for a refrigerator (Figure 
4-13), but now the effective output is the heat delivered Q1. Therefore the COP 
becomes ηHP = Q1/W, which in the Carnot limit is

	

ηC
HP

/
= =

−
=

−
=

−
Q
W

Q
Q Q

T
T T T T

1 1

1 2

1

1 2 2 1

1
1

	
(4.16)

For example, on a cold day with outdoor air temperature T2 = 0°C (273 K) and 
indoor temperature T1 = 20°C (293 K), the Carnot COP is ηC

HP =15.  The COP 

Commercially produced refrigerators now typically come with a COP 
rating posted in their specifications.

At first it may appear strange to have the COP, a type of efficiency rating, 
be larger than 1. Rest assured that this does not violate any laws of ther-
modynamics. The COP is simply a measure of how effectively the input 
energy W moves thermal energy from the cold reservoir at T2 to the hot 
reservoir at T1. Notice that the theoretical COP of any refrigerator drops 
as the temperature difference increases.
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for a real heat pump under these conditions is perhaps 3 or 4, which is still 
much better than using a traditional heat source (see Problem 4.10). Another 
advantage of having a heat pump is that in summer it can be turned around to 
cool the interior air, so no separate air conditioning unit is required.

Figure 4-14 shows the efficiency of a Carnot heat pump graphed against the 
temperature ratio T2/T1. Just as with a refrigerator, the efficiency drops as 
the temperature difference increases (or ratio decreases). Therefore, heat 
pumps are less attractive in climates that are subject to extreme tempera-
tures, where an additional conventional heat source might be needed as a 
supplement.

4.6.4  Internal combustion engines and the Otto cycle

The Carnot engine is an idealized engine. Real engines operate in various 
cycles, all different from the idealized Carnot one. An important example his-
torically as well as presently is the internal combustion engine, the traditional 
gasoline-powered engine used in automobiles and other applications.

We present two versions of the PV diagram for this engine cycle. Figure 4-15a 
is a fairly realistic representation of the actual engine cycle. These are the key 
steps in the process:

	 1.	G asoline vapor and air are drawn into the cylinder. This is the nearly hor-
izontal line at the bottom of the diagram, leading to the point labeled a.

	 2.	 The mixture is compressed.

0.5

5

10
ηcHP

1.0 T2/T1

Figure 4-14  “Efficiency” of a Carnot heat pump as a function of the ratio of the reservoir 
temperatures.
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	 3.	 At the point indicated, the mixture is ignited, giving rise to the power 
stroke. It’s in the expansion process that work is done and eventually 
transferred to the vehicle’s drive system.

	 4.	 The burned mixture (exhaust) is expelled, completing the cycle.

Figure 4-15b shows a simplified version of the cycle, which makes quantitative 
analysis more reasonable. This version is called the Otto cycle, after German 
engineer Nikolaus August Otto, who made a practical internal combustion 
engine in 1867. Rather than trying to deal with changing gas mixtures through-
out the cycle, the gas is simply assumed to be air, with adiabatic exponent 
γ = 7/5. Both the compression and expansion of the cylinder are assumed to 
take place adiabatically, which is not a bad assumption, because the cycle hap-
pens so quickly. Ignition takes place during step bc, with a drastic increase in 
pressure at constant volume V2. Exhaust is done in step da at constant volume 

(b) c

b

d

a

P

Q1

Q2

V2

P0

V1 V

Adiabatics

(a)

V2

Ignition occurs

Compression

Expansion

P0

V1 V

a
d

b

c

P

Figure 4-15  Four-stroke internal combustion engine: (a) the actual cycle and (b) the Otto 
cycle, an idealized representation of the actual cycle.
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V1. With compression and expansion assumed to be adiabatic, heat Q1 enters 
in ignition and heat Q2 exits in exhaust, as shown.

The following is an assessment of the thermodynamics of each step of the 
Otto cycle.

	a–b	 The piston moves to compress the gas reversibly and adiabatically with

	 T V T Va b1
−

2
−=γ γ1 1

	 (4.17)

	b–c	 Heat Q1 is added at constant volume from an external source with

	 Q C T TV1 c b= −( ) 	 (4.18)

	c–d	 The gas expands adiabatically and reversibly in the power stroke with

	 T V T Vd c1
−1

2
−1=γ γ

	 (4.19)

	d–a	 At the bottom of the power stroke, the gas is assumed to cool at constant 
volume to pressure P0 by giving up heat Q2 to external reservoirs, with

	 Q C T TV2 d a= −( ) 	 (4.20)

		  It is possible to derive an expression for the efficiency using 
Equations 4.1, 4.18, and 4.20. For this cycle,

	
η = − = − −

−






2 11 / 1 d a

c b

Q Q
T T
T T 	

		  Equations 4.17 and 4.19 for the adiabatic processes give on subtraction

	 ( ) ( )T T V T T Vd a c b− = −1
−

2
−γ γ1 1

	

		  or

	

V
V

T T
T T

1 c b

d a2

−1






= −
−

γ

	

		  For obvious reasons, the ratio V1/V2 is known as the compression ratio 
rc, so

	

η
γ

γ=1−



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=1− 12

1

−1

−1
V
V rc

	

(4.21)
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		O  bviously efficiency is improved with a higher compression ratio. 
In automobiles values for rc of about 7 or 8 are typical, giving a theoreti-
cal efficiency of 1 − 1/70.4 = 0.54. The actual efficiency of a real internal 
combustion engine is much lower than this idealized value, normally 
about 30%. High-performance cars are designed to have rc of 10 or more, 
approaching rc = 17 for Formula 1 racing cars.

The internal combustion engine is, relative to other alternatives, a very 
efficient one, which explains why it has been popular for use in automobiles 
for over 100 years. Its main disadvantages are that it relies on nonrenewable 
fossil fuel and emits hydrocarbons that act as greenhouse gases. Alternative 
energy sources for automobiles include the batteries and fuel cells discussed 
in Chapter 7. As of the early twenty-first century, the most popular alternative 
is the hybrid automobile, which harnesses together an internal combustion 
engine with rechargeable batteries.

4.7  SUMMARY

This has been an important chapter, and it is useful to summarize the results, 
which are not only useful by themselves but also in developing the concept of 
entropy (Chapter 5).

	 1.	 A heat engine converts heat into work in a cyclical process in which the 
working substance is unchanged.

	 2.	 A Carnot engine is a reversible engine that operates between two 
temperatures only. In general, engines take in and reject heat at a variety 
of temperatures.

	 3.	 The efficiency of a heat engine is

	
η = −1 2

1

Q
Q 	

	 4.	 The essence of the Kelvin statement of the second law is that a cyclical 
engine cannot convert heat from a single body at a uniform tempera-
ture completely into work. Some heat has to be rejected at a lower tem-
perature. The essence of the Clausius statement is that heat cannot flow 
from a cold body to a hot body by itself—work has to be done in a cyclical 
refrigerator to achieve this.
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	 5.	 The most efficient engine operating between a given pair of reservoirs is 
a Carnot engine. All Carnot engines operating between the same reser-
voirs have the same efficiency, independent of the nature of the working 
substance.

	 6.	 For a Carnot engine, the thermodynamic temperature is defined to be

	

Q
Q

T
T

T
T

1

2

1

2

= = −with 1c
2

l

η
	

		  The thermodynamic temperature is identical to the ideal gas temperature.

PROBLEMS

	 4.1	 Heat is supplied to an engine at the rate of 106 J/min, and the engine has 
a rated output of 10 horsepower. (a) What is the efficiency of the engine? 
(b) What is the heat output per minute?

	 4.2	 A storage battery delivers a current into an external circuit and per-
forms electrical work. The battery remains at a constant temperature by 
absorbing heat from the surrounding atmosphere. Heat then appears to 
be completely converted into work. Is this a violation of the second law? 
Explain.

	 4.3	 Show that two adiabatic lines on a PV diagram cannot intersect. (Hint: 
Imagine that they do; complete a cycle with an isotherm and operate an 
engine around this cycle.)

	 4.4	 An inventor claims to have developed an engine that takes in 1.1 × 108 J 
at 400 K, rejects 5.0 × 107 J at 200 K, and delivers 16.7 kW hours of work. 
Would you advise investing money in this project?

	 4.5	W hich gives the greater increase in the efficiency of a Carnot engine: 
increasing the temperature of the hot reservoir or lowering the temper-
ature of the cold reservoir by the same amount?

	 4.6	 Consider again the three-step cycle described in Chapter 3 Problem 
3.14. (a) Find the efficiency of a heat engine that operates using this 
cycle. (b) Find the Carnot efficiency of this engine, and compare the 
result to the real efficiency calculated in (a). Discuss the effectiveness of 
this engine.

	 4.7	 An electrical generating plant produces energy at a rate of 1.5 GW with 
an efficiency of 0.35. (a) Find the energy needed to run this plant and 
the waste heat discarded, both as rates in GW. (b) If the waste heat is 
dumped into the environment which is at 25°C, what is the minimum 
boiler temperature?
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	 4.8	 50 kg of liquid water initially at 0°C is frozen into ice in a refrig-
erator. The room temperature is 20°C. What is the minimum work 
input to the  refrigerator to achieve this? (Latent heat of fusion of 
water = 3.33 × 105 J/kg.)

	 4.9	 It is proposed to heat a house using a heat pump operating between the 
house and the outside. The house is to be kept at 22°C, the outside is at 
−10°C, and the heat loss from the house is 15 kW. What is the minimum 
power required to operate the pump?

	 4.10	 Suppose a house requires 4.3 GJ of heating in a winter month. The utility 
company charges $0.14 per kWh. (a) Find the cost savings of using heat 
pump versus a 95% efficient natural gas furnace. Assume a Carnot heat 
pump with average temperatures of 20°C indoors and 0°C outdoors. 
(b) Repeat part (a) using a more realistic coefficient of performance of 
4.0 for the heat pump.

	 4.11	 In low-temperature physics, a common refrigerant is liquid nitrogen, 
with a temperature of 77 K at P = 1 atm. (a) What is the maximum 
coefficient of performance of a refrigerator designed to maintain 
that temperature inside a lab at 20°C? (b) For work at extremely low 
temperatures, liquid helium with a boiling point of 4.2 K is used. Repeat 
part (a) for a refrigerator that maintains this temperature.

	 4.12	 Show that the efficiencies of the three Carnot engines, operating 
between the three reservoirs as illustrated in Figure 4-16, are related by

	 η η η η η3 1 2 1 2= + − 	

	 4.13	 A Carnot engine working on a satellite in outer space has to deliver a 
fixed amount of power at rate W. The temperature of the heat source is 
also fixed, at T1. The lower temperature reservoir at T2 consists of a large 
body of area A; its temperature is maintained at T2 because it radiates 

Q′1
Q2

Q3

Q2

Q1

Q′3

C3

C1

C2

W3

W1

W2

Reservoir 3

Reservoir 2

Reservoir 1

Figure 4-16 
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energy into space as much heat as is delivered to it by the engine. 
The  rate  of this radiation is σAT2

4  where σ is a constant. The  Carnot 
engine has to be designed so that, for a given W and T1, A has a minimum 
value. Show that A has a minimum value when T2 takes the value 3T1/4.

	 4.14	 A hypothetical engine, with an ideal gas as the working substance, 
operates in the cycle shown in Figure 4-17. Show that the efficiency of 
the engine is

	
η

γ
= − −

−






1
1 1

1
3 1

1 3

P P
V V

/
/ 	

	 4.15	 A simplified representation of the Diesel cycle, with just air as the work-
ing substance, is as shown in Figure 4-18. Show that the efficiency of 
this engine is

	

η
γ

γ γ

= −
( )−( )
( )− ( )











1
1 1 1

1 1

/ /

/ /

r r

r r

e c

e c
	

		  where re = V3/V2, the expansion ratio, and rc = V3 /V1, the compression 
ratio. If re = 5, rc = 15, and γ = 7/5, evaluate η. Notice that the compres-
sion ratio can be much higher in a Diesel engine than in an internal 
combustion engine. That is because Diesel engines do not suffer from 
pre-ignition, as the fuel is sprayed in at the end of the compression 
stroke; this allows an increased rc. This is one reason why Diesel engines 
are more efficient than internal combustion engines.

V

3

Adiabat

V3V1

P3

P1
Q1

Q2

P

1 2

Figure 4-17 
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	 4.16	 Show that the efficiency of the Otto cycle can be expressed as either

	
η η= − = −1 1

T
T

T
T

a

b

d

c

or
	

		  Show that both of these results are lower than the Carnot efficiency.
	 4.17	 (a) Discuss whether the direction of travel around the PV-diagram 

curve should be clockwise or counterclockwise for a heat engine. 
(b)  Discuss  whether the direction of travel around the PV-diagram 
curve should be clockwise or counterclockwise for a refrigerator.
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Chapter 5: Entropy

The concept of entropy is fundamental to many aspects of thermodynamics. 
In this chapter we define and develop the idea of entropy and provide some 
important examples. In Chapter 6 and beyond, entropy is understood from a 
statistical perspective as well as a thermodynamic one.

5.1  THE CLAUSIUS INEQUALITY

As a prelude to discussing entropy, there is an important theorem that 
applies  to cyclical processes. This theorem is known as the Clausius 
inequality.

5.1.1  Development of the Clausius inequality

Consider a working substance undergoing a cycle so that, at the end of the 
cycle, its state is unchanged. In Figure 5-1a this cycle is represented symboli-
cally by the circle in the center. The starting state is at the temperature T1 and 
is represented by the point 1. The engine is driven by a principal reservoir at 
temperature T0, assumed to be large enough that its temperature does not 
change appreciably when it supplies heat to the engine.

The working substance in the engine is driven around a cycle in the follow-
ing way. The state of the working substance is first changed to an infinitesi-
mally close neighboring state 2 at temperature T2 by injecting a small amount 
of heat δQ1. This is done with a Carnot engine C1, which operates between two 
auxiliary reservoirs at T1 and T0. The auxiliary reservoir at T1 supplies heat δQ1 
to the working substance, and an equal quantity of heat is supplied by C1 to 
that reservoir to leave it unchanged. C1 in turn takes heat (T0/T1)δQ1 from the 
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auxiliary reservoir at T0 and performs work δW1. If the auxiliary reservoir at T0 
is to remain unchanged, heat (T0/T1)δQ1 enters it from the principal reservoir. 
In this way, the change from 1 to 2 is made with the only other changes (a) the 
performance of the external work δW1 and (b) the extraction of heat (T0/T1)δQ1 
from the principal reservoir.

The process is repeated, taking the working substance from 2 to 3 with the help 
of the Carnot engine C2 and a new pair of auxiliary reservoirs at T2 and T0, and 
so on to complete the cycle.

Consider now the composite system consisting of the working system, all 
the Carnot engines, and all the auxiliary reservoirs. This composite system 
includes everything within the dashed line in Figure 5-1a. At the end of the 
cycle

	 1.	E verything in the composite system is unchanged, and so ΔU = 0;
	 2.	 The heat supplied to the composite system is

	

Q Q
T
T

i

i i

=∑δ 0

	

		  where the summation is over all the Carnot engines used;
	 3.	 The external work performed is

	

δW Wi

i
∑ ≡

	

Applying the first law to the composite system,

	 0 = − =Q W W Qor 	

This situation is represented in Figure 5-1b, where it is shown that heat has 
been extracted from a single reservoir and used to perform an equal amount of 
work. This is a violation of the Kelvin statement of the second law. The only way 
this process can occur is for both W and Q to be negative; that is, work is done 
on the system and an equal quantity of heat flows out. This is just the allowed 
situation of Figure 4-5. Alternatively, both W and Q could be zero. Therefore, 
one may conclude that

	 W Q= ≤ 0 	
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From the analysis above, this means that

	

T
Q
T

Q
T

i

ii

i

ii

0 0 0
δ δ∑ ∑≤ ≤or

	

In the limit of infinitesimal changes,

	

CQ
T

≤∫ 0� 	

where the circle on the integral sign indicates that the cycle is complete or 
closed. This is known as the Clausius inequality and is one of the key results in 
thermodynamics.

5.1.2  Discussion and implications

Before moving on, three important points should be made.

	 1.	 The proof of the inequality emphasizes that the T appearing inside the 
integral is the temperature of the auxiliary reservoirs supplying heat to 
the working substance. It is thus the temperature of the external source 
of heat. The Clausius inequality is written as

	

CQ
T0

0�∫ ≤ ( )Clausius inequality

	
(5.1)

where T0 is written to remind us of this.
	 2.	 If the cycle is reversible, the cycle could be undertaken in the opposite 

direction, and the proof would give

	

CQ
T0

0�∫ ≥
	

W would then be done on the composite system, with an equal amount 
of heat T0ΣiδQi/Ti being rejected to the principal reservoir. This does not 
violate the Kelvin statement, providing

	

W Q T
Q

T
i

ii

= = ≥∑0 0
δ
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The only way for both inequalities to be satisfied is for

	

CQ
T

R

R

reversible cycle only�∫ = 0 ( )

	

(5.2)

		  The placement of R at the bottom of the integral sign and as a subscript 
to đQ emphasizes that this relation is valid only for a reversible process. 
However, the 0 subscript on T has been dropped, because there is now no 
difference between the temperature of the external source supplying the 
heat and the temperature of the working substance.

	 3.	 The sign of the inequality follows from the fact that, in the proof, heat 
was always flowing into the engine. This requires that T0 > T and that the 
equality sign holds for the reversible case where T0 = T. Replacing T by 
the larger T0 makes the inequality less than zero.

5.2  ENTROPY

5.2.1  Definition

This concept follows immediately from Section 5.1. Suppose a system is taken 
along a reversible path R1 from an initial state i to a final state f and then 
back again to the initial state along another reversible path R2, completing a 
reversible cycle. Figure 5-2 illustrates this for a gas system.

f

P

V

R1

R2

i

Figure 5-2  A reversible cycle. The text shows that ∫đQ/T is the same for the reversible 
paths R1 and R2 connecting i and f.
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Because the cycle is reversible, the equality sign holds in the Clausius inequal-
ity (Equation 5.2). Remembering that the cycle is composed of the two revers-
ible paths R1 and R2,

	
R

R

R

R

i

f

R

R

i

f
C C CQ

T
Q
T

Q
T�∫ ∫ ∫= + =

1 2

0

	

so

	 R

R
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f

R

R
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i

1 2
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T

Q
T∫ ∫= −

	

But
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f

R

R
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2 2

C CQ
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Q
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because R2 is reversible. Thus,

	 R

R

i

f

R

R

i
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1 2

C CQ
T

Q
T∫ ∫=

	

which means that the integral R i
f ( /∫ CQ T ) is path independent. This means that 

there must be a state function S with

	

∆ = − = ∫S S S
Q
T

f i

R

R

i

f
C

	

(5.3)

This state function is called entropy. Notice that only entropy differences have 
been defined. Also, it cannot be stressed too strongly that the defining integral 
for entropy differences has to be taken over a reversible path. To summarize:

For an infinitesimal reversible process

	 CQ TdSR reversible only= ( ) 	 (5.4)
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The name entropy comes from the Greek en meaning inside and tropos mean-
ing transformation. Clausius invented the word (die Entropie in German) in 
1865. He intended the word to convey the idea of heat being converted into 
work in an engine.

5.2.2  Example of entropy change in water

As a first example, consider a beaker of water at atmospheric pressure that is 
heated from 20°C to 100°C by placing it in thermal contact with a reservoir at 
100°C. When the water reaches 100°C, the beaker is removed from the reser-
voir and placed in an insulating jacket. The process is shown in Figure 5-3. 
Heat passes from the reservoir into the water, and it might seem that a simple 
application of Equation 5.3 would suffice. However this equation applies to a 
reversible process, while the actual process here is irreversible because of the 
inherent finite temperature differences.

Consider again the argument encountered in Section 2.1.4. The water is in ini-
tial and final equilibrium states, each with well-defined entropies. Thus, the 
entropy change for this process is also well defined. One may simply imagine 
any convenient reversible process that takes the system between the same two 
end points and calculate the entropy change for this imaginary process, using 
Equation 5.3. This entropy change is then the same as that occurring in the 
actual irreversible process.

One simple reversible heating process between the end points could be affected 
by bringing up a whole series of reservoirs between 20°C and 100°C, keeping 
the pressure constant, so that the water passes through a series of equilibrium 
states. This process is shown in Figure 5-4.

20°C 20°C 100°C 100°C

100°C
Reservoir

100°C
Reservoir

Insulating
jacket

Figure 5-3  A beaker of water is heated irreversibly and isobarically between 20°C and 
100°C.
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When the water is at T and it is heated to T + dT by thermal contact with the 
reservoir at T + dT, the heat entering the water reversibly is

	 CQ C dTPr = 	

where CP is the water’s heat capacity at constant pressure. Hence, the entropy 
change of the water is given by Equation 5.4 as

	
C

C
S

Q
T
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dTP= =r

	

or
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(5.5)

To compute the entropy change, remember that the temperatures here repre-
sent the thermodynamic temperature T. For example, for exactly 1 kg of water 
with CP = 4.19 kJ/K,

	
∆ = 



 = ×S ( ) J/K

 K
293 K

J/K4190
373

1 01 103ln .
	

Any other reversible path would give, of course, the same answer, but this path 
is probably the most convenient.

20°C 20.1°C 100°C

Reservoir at
100°C

đQ = CP dT

Reservoir at
20.2°C

Reservoir at
20.1ºC

Reservoir at
T + dT

T

Figure 5-4  The same beaker of water is heated reversibly and isobarically between 20°C 
and 100°C in an imaginary process.

Notice that absolute temperature (in K) must be used in this computa-
tion, and the SI units of entropy are J/K.
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5.2.3  Entropy change in free expansion

As a second example of an entropy change, consider an ideal gas undergoing a 
free expansion doubling its volume (see Sections 2.2.2 and 3.5.1).

In a free expansion (i) the process is irreversible; (ii) there is no temperature 
change; and (iii) no heat enters the system, because the walls are adiabatic. In 
order to apply Equation 5.3 to find the entropy change, imagine a reversible 
isothermal doubling of the volume. Such an expansion could be achieved by 
allowing the gas to expand slowly while in thermal contact with a reservoir 
at T. Applying the first law to this process:

	 CQ dU PdV PdV= + = 	

where dU = 0 because T is constant. Thus,

	
dS

P
T

dV
nR
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where the last step uses the equation of state PV = nRT. Then
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(5.6)

This is the entropy change in and irreversible free expansion with a doubling of 
volume. For example, for one mole of an ideal gas

	
∆ = =

⋅




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=S nR ln ( )
.

ln .2 1
8 315

2 5 76mol
 J
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It is often mistakenly thought that heat has to flow into a system for there to 
be an entropy change and, conversely, that any adiabatic process takes place 

It is interesting to note that the change in entropy associated with n moles 
of an ideal gas that doubles its volume in a free expansion is always nR 
ln 2, regardless of the actual volume, pressure, or temperature of the gas. 
Deeper insight into this result is found in the statistical interpretation of 
entropy (Chapter 6).
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at constant entropy, or isentropically. This example shows this not to be so. 
Because

	 CQ TdSr = 	

applies only to a reversible process, a process has to be both adiabatic and 
reversible to be isentropic. Although free expansion is adiabatic, it is not isen-
tropic because it is irreversible.

5.3  THE PRINCIPLE OF INCREASING ENTROPY

5.3.1  Development of the principle

The Clausius inequality (Equation 5.1) contains the profound implication that 
processes can occur only if the net entropy of the universe increases or stays 
the same. To see how this arises, consider the cycle shown in Figure 5-5, con-
sisting of an irreversible path i to f followed by a reversible path back to i. To be 
specific, think of a gas system. (However, the argument given here is general.) 
The Clausius inequality gives

P

V

Irreversible

i

fReversible

Figure 5-5  An irreversible cycle consisting of an irreversible process followed by a 
reversible process back to the initial state.
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where the equals sign applies if the path i to f is reversible and so the whole 
cycle is reversible.

It follows that
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because the path f → i is reversible.

For an infinitesimal part of the process,

	

CQ
T

dS
0

≤
	

(5.7)

where the equality sign holds if it is reversible, and then T = T0. Equation 5.7 
says that, in an infinitesimal irreversible process between a pair of equilib-
rium states, there is a definite entropy change dS that is larger than the heat 
supplied in that irreversible process divided by the temperature of the external 
heat source. (Do not confuse this heat with the heat supplied in any imaginary 
reversible process used to calculate dS.)

Suppose now that the system is thermally isolated. Then,

	 C CQ S= ≥0 0and 	

or

	 S S Sf i thermally isolated− = ≥∆ 0 ( ) 	 (5.8)
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for a finite process. This leads to the important conclusion:

5.3.2  Discussion and implications

One word of warning must be given here. The principle of increasing entropy 
refers to net entropy changes. It does not say that the entropy of part of the 
system cannot decrease. In Figure 5-6, for example, heat flows from body A 
to body B at a lower temperature, both of which are contained in an adiabatic 
enclosure. ΔSA is then negative but

	 ∆ ∆ ∆S S S= +A B 	

is still positive, by the entropy increasing principle.

Before proceeding further, it is important to be absolutely clear as to the mean-
ing of the entropies Si and Sf in Equation 5.8. We have been considering an 
adiabatic process in which the system is changed from some initial equilib-
rium state with an entropy Si to a final equilibrium state with an entropy Sf. 
This entropy change could be brought about by a variety of means. For exam-
ple, work could be performed on the system irreversibly, or the system could 

The entropy of a thermally isolated system increases in any irrevers-
ible process and is unaltered in a reversible process. This is the prin-
ciple of increasing entropy.

Adiabatic wall

A B
Q

Figure 5-6  Although the entropy of a thermally isolated system can only increase or 
remain the same, the entropy of part of the system can decrease.

If in addition to being thermally isolated, the system is mechanically iso-
lated from the surroundings so that no work can be done, then by the first 
law the internal energy U remains constant too for this condition of total 
isolation.
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consist of two parts, A and B, which are initially at different temperatures and 
thermally insulated from one another; heat is then allowed to flow by remov-
ing the insulator, as indicated in Figure 5-7.

If one considers only initial and final equilibrium states, the concept of an 
entropy change should cause no difficulty. However, consider now a system 
consisting of a bar inside an adiabatic enclosure, with one end initially hot-
ter than the other, as in Figure 5-8a. The hot end of the bar will cool and the 
cold end will warm, so that the initial temperature gradient disappears and 
the final state is a bar of uniform temperature. Is there an entropy change, 
and is Equation 5.8 still valid? The answer is yes (to both questions), but the 
entropy of the initial nonequilibrium state must be defined in the following 
way. Imagine cutting the bar into thin slices, which are then insulated from 
each other, as in Figure 5-8b. The temperature of each slice may be taken as 
uniform over its thickness, in the limit of infinitesimal slices. Each slice may 
be regarded as being in an equilibrium state with a particular value of entropy 
determined by its mean temperature and the external pressure. (This assumes 
the physically reasonable assertion that the entropy of a slice does not depend 
on the temperature gradient, only on the mean temperature.) The entropy of 
the whole bar may then be taken as the sum of the entropies of these slices, 
and this idea can be used throughout the process to consider the entropies of 
all the intermediate nonequilibrium states for the bar. Interested readers are 

Bar

(a) (b)

T1

T1 > T2 adiabatic wall

T2

Figure 5-8  Entropy change of a bar in which there is an initial temperature gradient is cal-
culated by dividing the bar into slices and considering the entropy change for each slice.

Adiabatic wall

A AAdiabatic
insulator

Ti
A

Ti
B

Tf
TfB B

FinalInitial (Ti
A ≠ Ti

B) 

Figure 5-7  Entropy changes are calculated between equilibrium states.
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referred to the book by Zemansky 1981, where the entropy change is calculated 
for such a bar undergoing cooling.

This concept is no different from the simple system of Figure 5-7. There, the ini-
tial entropy of the system was taken to be the sum of the entropies for the two 
parts, considered in isolation from each other. Then heat flowed between them 
until the final state of uniform temperature was reached. At any intermediate 
nonequilibrium state, you can still think of the entropies of the two bodies just 
by thermally isolating them again from each other.

We conclude that, even in a process starting from an initial nonequilibrium 
state, the entropy of a thermally isolated system increases. It continues to 
increase until, as equilibrium is approached, the equality sign applies in 
Equation 5.8. Then the total entropy increases no more, because it has reached 
a maximum. In summary:

Local
reservoir

1 Local
reservoir

2

Local
reservoir

3

Adiabatic
wall

System

Q3

Q1

Q2

Figure 5-9  A system that exchanges heat with a set of local reservoirs only. The system 
and the reservoirs constitute the thermodynamic universe.

For a system thermally isolated from the surroundings:

S → a maximum

For a system that is totally isolated from the surroundings:

S→ a maximum with U remaining constant
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Finally, this argument can be extended by considering a system that is not 
thermally isolated but may exchange heat during a process with a given set of 
local reservoirs. These reservoirs may also exchange heat among themselves 
but not with any others. Together with the original system, they form a com-
bined system. Now surround this combined system as shown in Figure 5-9 
with an adiabatic wall; this will not cause any other physical changes because 
no heat crosses this boundary. This adiabatic enclosure contains everything 
that interacts during the process under consideration, and this assembly 
now constitutes a thermodynamic universe for the purpose of this argument. 
It should not be confused with the real universe, which may or may not be 
infinite and may not form an isolated system. Because this thermodynamic 
universe is thermally isolated,

	
∆Suniverse ≥ 0

	
(5.9)

for a finite process, with the equality sign holding for a reversible process.

5.3.3  Entropy and the arrow of time

The fact that the entropy of a thermally isolated system can never decrease 
if a process provides a direction for the sequence of natural events. Newton’s 
second law F = m d2r/dt2 is second-order in time t and is unaltered by replacing 
t with −t. Thus, classical dynamics suggests that physical processes can run 
backward as well as forward, with equal likelihood. Clearly this is not so. 
A  dropped teacup smashes into many pieces, but you have never seen the 
pieces spontaneously reform again into the teacup. The temperature gradient 
within the bar in Figure 5-8 decreases and then vanishes, but a bar with uni-
form temperature does not spontaneously establish a temperature gradient. 
The law of increasing entropy says that processes go only in the direction of 
increasing entropy of the universe. In the examples just given, the broken 
pieces have higher entropy than the unbroken cup, and the bar with uniform 
temperature has higher entropy than the bar with a temperature gradient. It is 
for this reason that the law of increasing entropy is often described as provid-
ing an arrow of time for the evolution of natural processes.

Why then does classical dynamics contradict what actually happens in nature? 
Quite simply, it is because classical dynamics is only an approximation of 
real physical processes, which are ultimately governed by more fundamental 
laws. In many instances, such as predicting satellite orbits, classical dynam-
ics is an excellent approximation, but it is still only an approximation. When 
the laws of electromagnetism and quantum mechanics can be applied, they 
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supersede classical dynamics, and they are not exclusively time-reversible. 
For example, an accelerated charge in vacuum spontaneously radiates energy 
but never gains energy. An isolated atom in an excited state moves sponta-
neously to a lower, not higher, energy state. Statistical mechanics (Chapters 
6 and 13) is essentially quantum mechanics applied to thermodynamic pro-
cesses, and that is the route for understanding why the arrow of time applies 
in thermodynamics.

5.3.4  Example: Entropy change for the universe

Consider again the example (Section 5.2.2) of heating a beaker of water, with 
heat capacity CP, from Ti = 293 K to Tf = 373 K. As in Section 5.3.2, the net 
entropy change of the universe is ΔSuniverse = ΔSA + ΔSB, where in this case A is 
the water and B is the reservoir at 100°C.

From Equation 5.5, the entropy change of the water is
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Because the water’s final temperature is higher than its initial temperature, 
the logarithm is positive and the water gains entropy.

In this process the reservoir loses an amount of heat Q = CP(Tf − Ti) irre-
versibly. To calculate its entropy change, imagine the reservoir losing this 
heat reversibly. An imaginary way of achieving this is to bring up another 
reservoir at a slightly lower temperature and for this heat to be transferred. 
Then,
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Notice that the temperature of the reservoir is constant at Tf = 373 K, and the 
entropy change is negative as heat flows out. Thus,
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which is positive, as it should be for this irreversible process.

It is instructive to modify this problem to ask the following question. What is 
ΔSuniverse if the water is heated in two stages by placing it first on a reservoir at 
50°C and, when it has reached that temperature, transferring it to a second 
reservoir at 100°C for the final heating?

Because the water is still being taken between the same two states, its entropy 
change is the same as before:

	
∆ = 


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S CPwater

373 K
293 K
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The net entropy change of the reservoirs can be found using the same method 
just employed:
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∆ = 



 − −







 =S CPuniverse

373 K
293 K

 K
323 K

 K
373 K

ln
30 50

00 014. CP

	

This is positive again but much less than the entropy change occurring when 
a single reservoir was employed. This is reasonable, because the use of two 
reservoirs is closer to a reversible heating, employing a number of reservoirs 
rather than just one.

A truly reversible cycle is accomplished using a Carnot engine. Suppose that a 
Carnot engine is operated between the reservoir at 100°C and the water, as in 
Figure 5-10. If the operating cycle of the engine is small, so that the heat đQ2 
rejected by the engine during one cycle causes only an infinitesimally small 

Notice that the magnitude of the entropy increase of the water is only 
slightly greater than the magnitude of the entropy decrease of the reser-
voir. This is typical in these calculations. Despite this small difference, 
there is no adjustment of parameters that can lead to an overall entropy 
decrease.
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change dT in the temperature T of the water, then T does not change signif-
icantly during one cycle and the required operating conditions for a Carnot 
engine of operating between a pair of reservoirs exist.

Because this process is reversible, Equation 5.3 may be applied:

	
∆ = − = −∫ ∫S

Q
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Q
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reservoir  K
C C1 1
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where đQ1 is the heat given out by the reservoir in one cycle. But
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and hence
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đQ2 = CP dT

373 K

T

Figure 5-10  A beaker of water may be heated reversibly by operating a Carnot engine 
between it and a reservoir at a higher temperature.
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This is the negative of the entropy change of the water. Therefore,

	 ∆Suniverse = 0 	

as it should be for a reversible process.

5.4  ENTROPY–TEMPERATURE DIAGRAMS

The thermodynamic state of a system can be specified by any pair of indepen-
dent state functions. In particular, a state is equally well specified by the pair S 
and T as by the pair P and V. Just as it is possible to represent a reversible pro-
cess as a line joining a succession of equilibrium states on a PV diagram, the 
same can be done on a TS diagram. However, the form of the line is very simple 
for certain useful processes.

Equation 5.4 shows that a reversible adiabatic process is an isentropic one, and 
therefore such a process is represented on a TS diagram as a straight line par-
allel to the T axis, as shown in Figure 5-11. A reversible isothermal process is 
represented by a straight line parallel to the S axis. Thus, the cycle for a Carnot 
cycle is a rectangle on a TS plot. Compare this with Figure 4-1, the PV diagram 
for the Carnot cycle.

S

cd

a b

adiabatadiabat

T

T1

Q1

Q2

T2

Figure 5-11  TS diagram for a Carnot cycle.
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As for any reversible process,

	

Q TdS= ∫
r 	

Therefore, the net heat absorbed in a Carnot cycle is given by the area shaded 
in the figure. This fact helps make TS plots of enormous value in engineering. 
You can think of this as analogous to the fact that the net work done in a cycle 
is the area enclosed on a PV diagram. In both cases the sign (of the net heat or 
net work) depends on the direction of the path taken around the cycle. (See 
Problem 5.17.)

5.5  THE THERMODYNAMIC IDENTITY

The first and second laws of thermodynamics can be combined to obtain an 
important equation in thermodynamics.

The differential form of the first law is

	 dU Q W= +C C 	

which is true for both reversible and irreversible processes. For an infinitesi-
mal reversible process,

	 C CW PdV Q TdS= − =and R 	

Thus,

	 dU TdS P dV= − ( )thermodynamic identity 	 (5.10)

We now argue that this equation is true for all processes, and not just for revers-
ible processes, as the argument seems to suggest. All quantities in Equation 
5.10 are state functions whose values are fixed by the end points (P, T) and 
(P + dP, T + dT) of the infinitesimal process. Therefore, the increments dU, dS, 
and dV are fixed and do not depend on the path joining the end points. As a 
result, any relation between them is independent of whether or not the process 
is reversible.
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This is a significant advance, because Equation 5.10 is a general relation among 
P, V, T, and S that holds for all paths between a pair of infinitesimally close 
equilibrium states, whether or not they are reversible. The relation expressed 
in Equation 5.10 is called the thermodynamic identity. It is sometimes called 
the central equation of thermodynamics, to stress its importance. This is no 
exaggeration. The whole of the science of thermodynamics is dependent on 
this equation, just as the whole of mechanics is dependent on Newton’s laws. 
Because it is an identity, and you do not have to ask whether the process we are 
considering is reversible or irreversible, it follows that the equations derived 
from it are generally true.

Later in this book you will see modifications of the thermodynamic iden-
tity that are useful in other situations. These arise because it is often useful 
to consider forms of energy other than its internal energy U. In Chapter 7 the 
thermodynamic identity is recast (separately) in terms of enthalpy H, Gibbs 
free energy G, and Helmholtz free energy F. In Chapter 11 the effects of open 
systems are considered, and there the thermodynamic identity is adjusted to 
include the chemical potential function µ.

Finally, note that Equation 5.10 considers only volume work PdV. If there are 
other kinds of work, these must be included in the thermodynamic identity. 
For example, if there were also magnetic work, the equation would have to be 
modified to

	 dU TdS PdV B d= − + 0 M 	

5.6 � OTHER EXAMPLES OF ENTROPY 
CALCULATIONS

Entropy is widely useful in thermodynamics. Before going on we present two 
other examples of how entropy can be computed in real physical systems.

5.6.1  Entropy of an ideal gas

Although the demonstration of the power of Equation 5.10 has to wait until 
Chapter 7, we can give an example here of its use to determine an expression 
for the entropy of an ideal gas in terms of the volume and temperature.
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For an ideal gas, where U = U(T),
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and so Equation 5.10 becomes

	 TdS C dT PdVV= + 	

Using the equation of state PV = nRT,

	
TdS C dT

nRT
V

dVV= +
	

The problem is best considered using molar quantities for the extensive 
parameters and representing them with lower-case variables s (for entropy), 
cv (for molar specific heat), and v for molar volume V/n:

	
ds

c
T

dT
R
v

dvv= +
	

Integrating, the molar entropy of the gas is

	
s c T R v sv= + +ln ln 0 	 (5.11)

where s0 is an integration constant that disappears when entropy differences 
are taken.

5.6.2  Entropy of a black hole

A black hole is an astronomical object that has its mass concentrated in such 
a small region of space that its gravitational field prevents light (or other 
electromagnetic radiation) from escaping. Black holes are found throughout 
the universe, for example, as remnants of supernova events and large ones at 
the cores of many galaxies.

Generally, the entropy of a system tends to increase with the system’s mass. 
(Chapter 6 will better explain this fact from a statistical perspective.) The ideal 
gas entropy in Equation 5.11 is, for example, consistent with this principle, as 
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the entropy grows with the number of moles n and the system’s heat capacity 
CV. A black hole cannot be understood classically, but using quantum mechan-
ics and general relativity, Stephen Hawking found that a black hole of mass M 
has entropy

	
S

k GM
hc

= 8 2 2π B

	
(5.12)

where G is the universal gravitation constant, kB the Boltzmann constant, c the 
speed of light, and h Planck’s constant. Notice that the entropy increases as the 
square of the mass.

For example, for a black hole with a mass of 10 solar masses (or 2.0 × 1031 kg), 
Equation 5.12 gives an entropy of 1.5 × 1056 J/K. It is difficult to put this num-
ber into perspective, but it is immensely larger than the entropy you might 
encounter in everyday experience or laboratory work, for example an ideal gas 
with entropy given by Equation 5.11.

PROBLEMS

	 5.1	 A bucket containing 5.0 kg of water at 25°C is put outside a house 
so that it cools to the temperature of the outside at 5°C. What is the 
entropy change of the water? [cP for water = 4.19 kJ/(kg ⋅ °C)]

	 5.2	 5.0 kg of water at 25°C is added to 10.0 kg of water at 85°C. After 
the mixture has reached equilibrium, how much has entropy 
changed? (Assume no energy is exchanged between the water and 
its surroundings.)

	 5.3	T wo systems that have the same heat capacity CV but different ini-
tial temperatures T1 and T2 (with T2 > T1) are placed in thermal 
contact with each other for a brief time, so that some heat flows 
but the temperature of neither system changes appreciably. Show 
that there is a positive net entropy change associated with this heat 
flow.

	 5.4	 Calculate the entropy change for each of the following: (a) 10 g of 
steam at 100°C and a pressure of 1 atm condensing into water at the 
same temperature and pressure. (The latent heat of vaporization of 
water is 2260 J/g.); (b) 10 g of water at 100°C and a pressure of 1 atm 
cooling to 0°C at the same pressure. (The average specific heat of 
water between 0°C and 100°C is 4.19 J/g.); and (c) 10 g of water at 0°C 
and a pressure of 1 atm freezing into ice at the same pressure and 
temperature. (The latent heat of fusion of ice is 333 J/g.)
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	 5.5	 The low-temperature molar specific heat of diamond varies with 
temperature as

	
c

T
V = × 





⋅1 94 103
3

.
θ

J/(mol K)
	

where the Debye temperature θ = 1860 K. What is the entropy 
change of 1.0 g of diamond when it is heated at constant volume 
from 4–300 K? (The atomic mass of carbon is 12.0 g/mol.)

	 5.6	 An electric current of 10 A flows for 1 min through a resistor of 20 Ω 
which is kept at 10°C by being immersed in running water. What is 
the entropy change of the resistor, the water, and the universe?

	 5.7	 A thermally insulated resistor of 20 Ω has a current of 2.5 A passed 
through it for 1.5 s. It is initially at 20°C. The resistor’s mass is 
5.0 g, and cP for the resistor is 0.80 kJ/(kg ⋅ °C). (a) What is the final 
temperature? (b) What is the entropy change of the resistor and 
the universe? (Hint: In the actual process, dissipative work is done 
on the resistor. Imagine a reversible process taking it between 
the same equilibrium states.)

	 5.8	 An ideal gas has a molar specific heat given by cV = A + BT where 
A and B are constants. Show that the change in entropy per mole 
in going from the state (V1, T1) to the state (V2, T2) is
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	 5.9	 A 50-kg bag of sand at 25°C falls 10 m onto the pavement and comes 
to an abrupt stop. What is the entropy increase of the sand? Neglect 
any transfer of heat between the sand and the surroundings, and 
assume that the thermal capacity of the sand is so large that its tem-
perature is unchanged. (Hint: Consider the following: (i) What is 
the dissipative work done on the sand? (ii) What is the change in the 
internal energy of the sand? (iii) What is the entropy change associ-
ated with this ΔU at constant T? The sand does no external work as 
it deforms when it hits the pavement; only its shape changes, not its 
volume.)

	 5.10	T wo moles of an ideal gas undergoes a free expansion, tripling its vol-
ume. What is the entropy change of (a) the gas and (b) the universe?

	 5.11	T wo equal quantities of water, of mass m and at temperatures T1 
and T2, are adiabatically mixed together, the pressure remaining 
constant. Show that the entropy change of the universe is
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where cP is the specific heat of water at constant pressure. Show that 
ΔS ≥ 0. (Hint: (a − b)2 ≥ 0 for any real a and b.)

	 5.12	 Consider two identical bodies of heat capacity CP and with negligi-
ble thermal expansion coefficients. Show that when they are placed 
in thermal contact in an adiabatic enclosure their final tempera-
ture is (T1 + T2)/2 where T1 and T2 are their initial temperatures.

		N  ow consider these two bodies being brought to thermal equilib-
rium by a Carnot engine operating between them. The size of the 
cycle is small, so that the temperatures of the bodies do not change 
appreciably during one cycle; thus the bodies behave as reservoirs 
during one cycle. Show that the final temperature is (T1 T2)1/2. (Hint: 
What is the entropy change of the universe for this second process?)

	 5.13	 A semipermeable membrane is one that allows the passage of one 
type of molecule. At equilibrium the gas pressures on either side of 
such a membrane are equal. Such membranes exist.

		  Consider a mixture of two ideal gases A and B contained in the left-
hand half of the box as shown in Figure 5-12a. There is a vacuum in 
the right-hand half. The box is fitted with a pair of coupled sliding pis-
tons; the left-hand one is permeable to A only, while the right-hand one 
is impermeable to both. The box is divided into two with a partition 
permeable to B only. Now slide the coupled pistons slowly to the right 
as shown in Figure 5-12b so that, eventually, the two gases separate 
reversibly. They will finally each occupy a volume equal to the original 
volume of the mixture. This is shown in Figure 5-12c. Let this process 
occur isothermally. (a) By considering the pressures due to each gas on 
either side of the membranes, show that the net force on the coupled 
pistons is zero. (b) The heat flowing into the system in this isothermal 
reversible process is Q = T(Sf − Si) where Si and Sf are the initial and 
final entropies. By now applying the first law, show that Si = Sf.

Gas A + B

= Gas A
= Gas B

Vacuum(a) (b) (c) Gas A Gas B

Figure 5-12 
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This result is known as Gibbs’s theorem. It says:

In other words,

	 S T V S T V S T VA B A B+ = +( , ) ( , ) ( , ) 	

	 5.14	 From Equation 5.11, for n moles of an ideal gas the entropy is

	
S nc T nR

V
n

Sv= + 



 +ln ln 0

	
(5.13)

Now nA moles of an ideal gas A of volume VA and temperature T are 
separated from nB moles of another ideal gas B of volume VB at the 
same temperature T (see Figure 5-13a). The partition is removed so 
that the gases mix isothermally at the temperature T, the mixture then 
occupying the volume VA + VB (see Figure 5-13b). (a) Use Gibbs’s theo-
rem, introduced in the preceding problem, to show that the entropy 
change occurring in this mixing is
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(b) Suppose that the gases are identical. Clearly, on removing 
the partition, there can now be no entropy change, because the 
physical system is unchanged. However, the result just proved in 
(a) gives ΔSmixing ≠ 0! This is known as the Gibbs paradox. Is the 
result given in (a) valid for identical gases and if not, why not? 

In a mixture of ideal gases, the entropy is the sum of the entro-
pies that each gas would have if it alone occupied the whole 
volume.

Gas A Gas B

(a) (b)

Mixture A + B

nA nB

VA VB VA + VB

T T T

Figure 5-13 
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(Hint: Consider how Gibbs’s theorem was proved.) (c) Obtain the 
correct expression
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for the entropy of mixing of identical gases by applying Equation 5.11 
to the three volumes VA, VB, and VA + VB, all containing the same gas. 
(d) By using the fact that, for identical gases,
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show that the entropy of mixing given in (c) is indeed zero. (The Gibbs 
paradox is discussed in the book by Chambadal, 1973.)

	 5.15	O ne mole of helium gas is initially at P0 = 1.0 atm and T0 = 273 K. (a) 
Compute the entropy change if the gas is heated at constant pressure 
to temperature 400 K. (b) Starting again from the initial state (P0, T0), 
what is the entropy change if the gas expands isothermally to twice its 
original volume?

	 5.16	 In one day a refrigerator with coefficient of performance 3.5 uses 
2.0 kWh of electrical energy to keep the refrigerator compartment at 
4°C while expelling heat to a kitchen at 20°C. How much entropy is 
generated in 1 day?

	 5.17	 A Carnot cycle like the one in Figure 5-11 might represent, for example, 
a Carnot heat engine or a Carnot refrigerator. The difference between 
the two is the direction of the path taken. (a) Explain which path 
(clockwise or counterclockwise) represents the heat engine and which 
represents the refrigerator. (Hint: Think of the net heat Q for each pro-
cess.) (b) Argue that your result (clockwise vs. counterclockwise) is 
perfectly general for any cyclical process represented by a closed path 
on a TS diagram.
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Chapter 6: Statistical Mechanics

The study of thermodynamics is greatly advanced by considering how 
macroscopic thermal behavior depends on the behavior of atoms and mol-
ecules. It is impossible to measure and predict the motions of a large num-
ber of individual molecules, on the order of Avogadro’s number or more. 
For  that  reason it is necessary to apply the laws of statistics. This way of 
studying thermal physics is called statistical thermodynamics or statistical 
mechanics.

6.1 � INTRODUCTION TO PROBABILITY 
AND STATISTICS

Fortunately, the statistical properties of physical systems are based largely on 
some simple rules of probability, which are well understood. Our approach 
will be to introduce some important rules and concepts from probability for 
smaller systems and then generalize to larger ones.

6.1.1  Probability in a two-state system

Tossing a coin is a familiar and simple example that illustrates some basic 
concepts in probability. Suppose you have a fair coin that has an equal chance 
or showing heads (H) or tails (T) when tossed. If you toss the coin twice in 
succession and record the result each time, there are four possible outcomes: 
HH, HT, TH, and TT (where for example HT means H on the first toss and T on 
the second).

In the experiment just described, what is the probability that you will observe 
a total of 2, 1, or 0 heads in the two tosses? Notice that out of the four results 
there is one way to get two heads (HH), one way to get zero heads (TT), but 
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there are two ways (HT and TH) to get one head. A general rule is that the prob-
ability of a particular result such as 2, 1, or 0 heads is the number of ways to 
obtain that result divided by the total number of outcomes, in this case four. 
(This is based on the idea that on any particular pair of tosses each of the four 
outcomes is equally likely.) Therefore the probabilities are

	
P P P( ) . ( ) . , ( ) .2

1
4

0 25 1
2
4

0 50 0
1
4

0 25= = = = = =and
	

where for example the notation P(2) means the probability of two heads. Notice 
that, by convention, the sum of the probabilities is arranged to be exactly 1, 
which we will take to be a general rule.

6.1.2  Ideal gases and multiplicity

The example of tossing coins is analogous to the two-molecule gas, shown in 
Figure 6-1a. The two molecules are free to move throughout a rectangular box. 
For a classical gas, it is assumed that collisions with the walls and with the 
other molecule are elastic. With these assumptions, the probability of a given 
molecule being in either the left half (L) or right half (R) is exactly one half. At 
random times you might observe both molecules to see how many are in each 
half. By analogy with the coin toss, a single measurement of the number of 
molecules on the left half will yield 2, 1, or 0 with probabilities 0.25, 0.50, and 
0.25, respectively.

Sometimes you see probabilities expressed as a percent, such as 25% for 
probability 0.25. Because we have defined probabilities as fractions, we 
will represent them only as fractions or in the equivalent decimal form 
but not as percentages, so as to avoid confusion.

(a)

L R

(b)

L R

Figure 6-1  (a) A two-molecule gas in a two-sided chamber. (b) A three-molecule gas in 
the same chamber.
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What happens when the number of molecules is increased? Figure 6-1b shows 
a three-molecule gas. A measurement of the positions (L or R) of the three mol-
ecules has the following eight outcomes: LLL, LLR, LRL, RLL, LRR, RLR, RRL, 
and RRR. Notice that there is one way (LLL) to find three molecules on the left 
side, but there are three ways (LLR, LRL, and RLL) to find two molecules on 
the left side, and so on. The probability P(n) of finding n molecules on the left 
is given by

	
P P P P( ) . ( ) . ( ) . , ( ) .3
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Before generalizing the results, some definitions are in order. A particular 
ordering of the three molecules (such as LLR) is called a microstate, and the set 
of orderings that yield the same result (such as two on the left) is called a mac-
rostate. The number of microstates in any macrostate is called the multiplicity 
and designated by the symbol Ω. For example, in the three-molecule gas the 
macrostate with two molecules on the left has multiplicity Ω = 3.

In general, the probability of any macrostate is given by the multiplicity of that 
macrostate divided by the sum of all the multiplicities. Symbolically,
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(6.1)

where the sum i is carried out over all macrostates. For the three-molecule 
gas, the four probabilities computed above follow from this general rule. It is 
straightforward to show that the sum of all the probabilities is one, as required.

The three-molecule gas is still not very useful, but these computations are eas-
ily generalized to a gas of N molecules. The multiplicity Ω(N, n) of the macro-
state with n out of the N molecules on one side (left or right) is

	
Ω( , )
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N n
N

n N n
=

−( ) 	
(6.2)

This result, familiar in probability theory, is sometimes read “N choose n” 
because you are choosing n out of the total N to be in one particular place. It is 
expressed in the shorthand notation
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Notice that the results for both the two- and three-molecule gases follow from 
Equations 6.1 and 6.2.

6.1.3  Larger systems

It is useful to apply the results in the preceding section to an N-molecule gas, 
where in most situations N becomes a very large number. The multiplicity of 
the state with n molecules in the left half of the box is given by Equation 6.2. As 
N grows, the multiplicity becomes more sharply peaked around its maximum 
value at n = N/2. Table 6-1 illustrates this for some larger values of N. In each 
case the peak value Ω(N, N/2) is compared with Ω(N, n) just 0.1N away from 
the peak. These results clearly show the trend for increasing N. The same trend 
is shown graphically in Figure 6-2. As the number of particles in the sample 
grows, the multiplicity function grows sharper.

Now consider what happens if the gas is the air in a typical room, with 
N perhaps on the order of 1027 for a room full of air under normal conditions. 
The multiplicities are too large to present in a table, but the trend you have 
seen illustrates that it is very, very unlikely that there will ever be any signifi-
cant deviation from n = N/2. There are certainly fluctuations in n as the gas 
molecules zip around, but those deviations are too small relative to N ≈ 1027 
for you to notice or to measure as a local pressure deviation. Thankfully, after 

The results Ω(N, n) are the same as the binomial coefficients from alge-
bra. For example, (x + y)3 = x3 + 3x2y + 3xy2 + y3, with the coefficients 1, 
3, 3, 1 matching Ω(N, n) with N = 3. You may have seen the coefficients 
displayed graphically in Pascal’s triangle.

Table 6-1  Multiplicities of Selected States for an 
N-molecule Monatomic Gas 

N Ω(N, N/2) Ω(N, N/2 ± 0.10N) Ratio

10 252 210 0.83

100 1.0 × 1029 1.4 × 1028 0.14

1000 2.7 × 10299 5.0 × 10290 2 × 10−9

Note:	 The ratio in the final column is the ratio of the two preced-
ing columns, showing the relative likelihood of a 10% 
deviation from the peak value.
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reading this section you can go on living with every expectation that the air 
you need to breathe will not spontaneously flood the other side of the room!

Conversely, the same statistical argument explains the process of free 
expansion (see Sections 3.5.1 and 5.2.3). A gas initially confined to volume 
V and then suddenly allowed to expand into volume 2V will do so readily, 
because it is much more likely that the molecules will be distributed through-
out the new allowed volume 2V than the smaller volume V. Free expansion will 
be considered again from a statistical viewpoint in Section 6.2.

6.2  MICROSCOPIC VIEW OF ENTROPY

In Section 6.1 we considered the statistical distribution of an N-molecule gas 
based on measurements of which half of the container each molecule occu-
pies. This is only a crude start and does not begin to provide a complete statisti-
cal description of the gas’s thermal properties.

(a)

(c)

(b)Ω(N, n)

0 5 10 n

Ω(N,n)

0 10 20 n

Ω(N,n)

0 100 200 n

Figure 6-2  Multiplicity function Ω(N, n) for (a) N = 10; (b) N = 20; and (c) N = 200 particles. 
Even with a fairly small number of particles, the sharpening of the multiplicity function 
with increasing N is evident.



134    Chapter 6: Statistical Mechanics

6.2.1  Phase space

To begin understanding the gas’s thermal properties, note that the micro-
scopic description of a gas involves each molecule’s position, for example 
(x, y, z) in Cartesian coordinates, and its momentum components (px, py, pz). 
Together these six variables constitute a six-dimensional state space or phase 
space. For an N-molecule gas, the appropriate phase space has 6N dimensions.

On the scale of single molecules, it is necessary to use quantum mechanics 
rather than classical mechanics. Heisenberg’s uncertainty principle says that 
for a particle in one-dimensional motion, position x and momentum px cannot 
be measured exactly but rather have uncertainties Δx and Δpx, with the restric-
tion that the product ΔxΔpx has a minimum value on the order of Planck’s con-
stant h. For three-dimensional motion, the same relation holds for each pair 
of position–momentum components, so the product ΔxΔyΔzΔpxΔpyΔpz has a 
minimum value on the order of h3.

The uncertainty in measurement is illustrated graphically in Figure 6-3. 
It  is impossible to visualize a six-dimensional space in three-dimensional 

y

∆x x

Space cells Momentum cells

∆p

py

px
∆p

Figure 6-3  A schematic representation of phase space. A distribution of all the particles 
over the cells gives rise to a definite macroscopic state. The space cells are of volume Δx3 
and the momentum cells of volume Δp3.

Note: We say on the order of h3 because the exact minimum value 
depends on the type of wave function being used to describe the particle. 
For the purposes of this discussion, there is no need to be more precise.
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diagrams, so for simplicity just two spatial dimensions and two velocity 
components are represented on separate diagrams. In the diagram on the left, 
the uncertainties Δx and Δy divide space into cells. Each dot represents a par-
ticle that has its position (x, y) within that cell. Similarly, the diagram on the 
right shows momentum space divided into cells, with each dot representing a 
particle with momentum (px, py).

The real three-dimensional space, with its six-dimensional “volume” (called a 
hypervolume), is then split into cells having hypervolume (Δx)3(Δp)3, where by 
symmetry the three spatial dimensions are assumed equivalent (Δx) and the 
three momentum dimensions are also equivalent (Δp). The statistical descrip-
tion of the system is based on counting the number of particles that fall into 
each hypervolume cell.

6.2.2  Statistical entropy

In terms of the kinds of states described in Section 6.1, a microstate of a 
system is defined by having a certain number of particles in each phase 
space cell. A macrostate, on the other hand, has a particular set of state 
variables: temperature, entropy, and so on. In general there are many differ-
ent microstates that give rise to the same macrostate, and this is the multi-
plicity Ω of the macrostate. This leads to the key statement of statistical 
mechanics:

For any macroscopic system, where the number of particles is very large, the 
thermodynamic probability becomes exceptionally large for a particular mac-
rostate relative to the others, and this will be the observed equilibrium state. An 
isolated system will move from a state of low thermodynamic probability to the 

Note: This statement is equivalent to the ergodic hypothesis, which states 
that over a sufficiently long time all cells of the phase space will be sam-
pled with equal probability. A system that behaves this way is said to be 
ergodic.

The probability of a given macrostate occurring is proportional to Ω.
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final equilibrium state of maximum thermodynamic probability, consistent 
with the internal energy U remaining constant. We conclude that

	 Ω → a maximum 	

This is a clue to the meaning of entropy. Remember from Chapter 5 that, for an 
isolated system,

	 S → a maximum 	

while U remains constant. Additionally, S is an extensive quantity, so that the 
entropy of two separate systems is S1 + S2. If the number of ways of realizing 
the first system is Ω1 and Ω2 for the second, then the number of ways of realizing 
both systems together is

	 Ω Ω Ω= 1 2 	

This leads to the definition of statistical entropy:

	
S k= Bln Ω

	 (6.3)

where kB is the Boltzmann constant. The factor ln Ω is required, so that ln (Ω1 
Ω2) = ln Ω1 + ln Ω2, to satisfy the additive property of entropy. The factor kB is 
not as obvious, but it is correct on dimensional grounds and will be justified by 
the correct results to which it leads in thermodynamics. Equation 6.3 is famous 
and is known as the Boltzmann relation. To summarize this important result:

Remarkably, the statistical version of entropy is equivalent to the thermody-
namic entropy defined in Chapter 5. We will not prove this fact, but rather it 
will be illustrated in examples that follow in Sections 6.2.4 and 6.2.5.

The microscopic viewpoint interprets the increase of entropy for 
an isolated system as a consequence of the natural tendency of the 
system to move from a less probable to a more probable state.

A version of the definition of statistical entropy (Equation 6.3) is carved 
on Boltzmann’s tombstone in Vienna.
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6.2.3  Entropy and disorder

Sometimes Ω is identified as a measure of “disorder” in the system. This implies 
that you should expect the disorder of an isolated system to increase. To see 
what this means, consider the microstate in which all the particles are in one 
cell in phase space. This is a highly ordered arrangement in phase space, which 
can be achieved in only one way with Ω = 1 and S = 0. It is a highly ordered 
arrangement in real space, too, with all the particles in the same place and 
moving with identical velocities. The particles will spread out from this highly 
ordered state, occupying more cells in phase space and lessening the order or 
increasing the disorder in that space. The multiplicity will increase from 1 to a 
large value, with the entropy increasing accordingly. It is in this sense that Ω is 
a measure of disorder.

However, you should note this word of caution. Disorder is a subjective prop-
erty, while multiplicity and entropy are exact physical quantities. Apart from 
simple cases like the one described above, the connection between entropy 
and disorder is not always clear, and you can fool yourself by trying to make 
predictions based on a subjective assessment of order and disorder rather than 
quantitative laws.

With this in mind, it is useful to examine the agreement between the 
macroscopic and microscopic viewpoints in two specific examples.

6.2.4 � Entropy change in free expansion: 
Microscopic approach

You know that there is no temperature change in a free expansion of an ideal 
gas, and so the mean kinetic energy and root-mean-square momentum 

p prms

/

≡ ( )2
1 2

 of the molecules remains unchanged. Consider such an expan-

sion in which the volume is doubled.

The momentum part of phase space is a hypercube of volume on the order 
of prms

3 . Therefore, the number of momentum cells that can be occupied is 
p prms/3 3∆ , and this number does not change upon expansion, because prms is 
unchanged. However, the number of space cells doubles from V/Δx3 to 2 V/Δx3, 
where V is the original volume. This means that, if the number of possible 
arrangements for fitting the molecules in the cells before the expansion is 
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Ω, after expansion it is now 2NΩ, because each of the N molecules now has a 
choice of twice as many cells in phase space. Thus

	 ∆ Ω ΩS k k kN N= − =B B Bln(2 ln ln 2) 	

Using the properties of logarithms:

	 ∆S Nk nR= =Bln2 ln2 	 (6.4)

with the result expressed both in terms of N molecules and n moles. 
This  matches the result obtained earlier (Equation 5.6), so in this case the 
statistical and thermodynamic approaches yield identical results.

6.2.5  Entropy of an ideal gas: microscopic approach

In Chapter 5 you saw that the thermodynamic identity can be used to obtain 
an expression for the entropy of an ideal gas (Equation 5.11). The same result 
can be obtained from microscopic considerations. For simplicity consider 
a monatomic gas, so that the atoms have only translational degrees of 
freedom.

The atoms of the gas have to be placed into the cells of phase space subject to 
the following two restrictions:

	 1.	 All the atoms have to be contained in a box of volume V.
	 2.	 The total energy of the atoms of mass m is fixed at U and is all kinetic, with

	

U
p
m
i

i

=∑
2

2
	

		  where the summation is over the N atoms.

The total number of ways Ω of filling up the cells in phase space is the product 
of the number of ways Ωspace the space cells* of volume Δx3 can be filled multi-
plied by the number of ways Ωmomentum the different momenta cells of volume 
Δp3 can be filled. Thus

	 Ω Ω Ω= space momentum 	

* The use of the word cell in statistical mechanics should be strictly confined to an elementary 
volume Δx3Δp3 of phase space.



6.2  Microscopic View of Entropy    139

First, think about how to calculate Ωspace. As a visual guide, Figure 6-4 shows 
just two dimensions of space cells, with Δx = Δy for convenience. In three 
dimensions, each atom has V/Δx3 distinct locations in the box. Thus

	
Ω =

∆




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space
V
x

N

3

	

Next, consider how to calculate Ωmomentum. Although each atom is not confined 
to a finite “momentum box,” the atoms have a root-mean-square momentum 
prms. Because U N E= , the relationship between U and prms is

	
U N

p
m

= rms
2

2 	

For the purpose of this calculation, we may take the atoms as being confined 
within a momentum box of side prms as shown in Figure 6-5. The number of 
cells in the momentum box is  (prms/Δp)3 for each atom. Thus
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∆
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Multiplying these two results,
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However, this argument has overcounted the ways of filling the phase space 
cells, because it has assumed that the atoms are distinguishable, just as if 
they are labeled with a number. The two situations depicted in Figure 6-6 are 

y

∆x

∆x

x

Figure 6-4  Space cells of volume Δx3.
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clearly the same physically. To find the correct multiplicity, notice that there 
are N! ways of arranging the N identical atoms in a given set of boxes. Thus

	
Ω

∆ ∆






≈indistinguishable

rms1 3

3 3N
p V
x p

N

! 	

In N is large, one may use Stirling’s approximation for factorials:
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Figure 6-6  An illustration of two equivalent arrangements in phase space.
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Figure 6-5  Momentum cells of volume Δp3.
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Therefore
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Using the Heisenberg principle with ΔxΔp = h for minimum uncertainty 
(see Section 6.2.1), this becomes
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(6.5)

where again the results are presented both in terms of N molecules and n moles.

This result is very close to the famous result derived by Sackur and Tetrode 
using more rigorous and complicated arguments than the simple ones 
employed here. The Sackur–Tetrode result is
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/ /

/≈ 3
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(6.6)

It is now straightforward to obtain the entropy using either Equation 6.5 or 6.6:

	
ln ln

S k

nk N
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U
n

B

B A

=

= + +
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other constant terms
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For one mole V/n = v and U/n = u, so

	
s R v u= + 3

2
+



ln ln constant terms

	

But from kinetic theory the energy of one mole of monatomic gas is

	
u N k T RTA B = =3

2
3
2 	

Note that e in this context is the base of the natural logarithms, not the 
electronic charge.
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Therefore for a monatomic gas

	
s R v R T s= + +ln ln

3
2

0

	
(5.11)

where s0 is a constant. Because cv = 3/2 R for a monatomic gas (Section 3.4.3), 
this is the identical result to Equation 5.11, which was obtained using 
macroscopic ideas.

6.2.6  Degradation of energy and heat death

We conclude this section on entropy by discussing the connection between 
the increase in entropy of the universe associated with an irreversible process 
and the decrease in the energy that is available for performing work. This can 
best be seen by considering an example that recalls the macroscopic view of 
entropy form Chapter 5.

In Figure 6-7a, a Carnot engine operates between two reservoirs at T1 and 
T0, where the temperature T0 of the second reservoir is the lowest tempera-
ture available. The efficiency of this engine is η = 1 − (T0/T1) and so, if heat q is 
extracted from the hotter reservoir at T1, the work delivered is w = q(1 − T0/T1). 
For a Carnot engine the process is reversible, and ΔSuniverse = 0.

Now suppose the same heat transfer q is made into the engine from a second 
reservoir at a temperature ′<T T1 1. As shown in Figure 6-7b, this is done by 

The results of Sections 6.2.4 and 6.2.5 are consistent with the fact that 
the statistical entropy S = kB ln Ω is the same as the thermodynamic 
entropy.

The Sackur–Tetrode equation is important historically, because it sug-
gests quantization (and a value for Planck’s constant h) based solely on 
experimental work in thermodynamics. The result provides a basis for 
quantum theory that is independent of Planck’s first conception of it, 
which he developed in the theory of blackbody radiation (Chapter 13), 
and from Einstein’s conception of quantization based on the photoelec-
tric effect.
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allowing the heat q first to be conducted along a metal bar (insulated from 
its surroundings) from the reservoir at T1 to the reservoir at ′T1  and then 
being delivered to the engine. The work given out by this combined device 
is w q T T′ = − ′( )1 0 1/ ; this is less than w by an amount

	
∆ = − ′ =

′
−





w w w qT
T T

0

1 1

1 1 	
(6.7)

This second process is irreversible, because the conduction of heat along the 
bar is irreversible. The entropy change of the universe is

	
∆ =

′
−



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S q
T T

universe
1 1

1 1 	
(6.8)

because of the entropy changes –q/T1 and + ′q T/ 1  at the two reservoirs. You can 
see immediately from Equations 6.7 and 6.8 that the amount of work lost by 
using the second irreversible device is simply

	 ∆ ∆w T S= 0 universe 	 (6.9)

Although this point has been illustrated using one example, it can be shown 
that it is generally true that, in any irreversible process, the energy that becomes 
unavailable for work is always T0ΔSuniverse. This result is called the degradation 
of energy. It means simply that the quality (or potential for work) of the energy 
in the universe decreases by T0ΔSuniverse in every irreversible process. This is 
simply the macroscopic manifestation of the tendency of systems to move into 
more probable states, as discussed in Section 6.2.2.

C W

Insulated bar(a) (b)

W ′C

T1

T0 T0

T1
q

q

T1′

Figure 6-7  An example illustrating the degradation of energy.
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It is often said that the world is suffering from an energy crisis. You know 
from the first law that energy is always conserved—energy (or more precisely 
mass–energy) cannot be destroyed. In the long run, the universe will suffer 
from an entropy crisis. Every irreversible process increases the entropy of 
the universe and this means, as was just demonstrated, a loss of capacity of 
energy for work.

On the scale of Earth, available energy is used by, for example, burning fossil 
fuels and running nuclear reactors. These fuels are used up because of their 
entropy increase, as they are converted to less useful molecules and nuclear 
isotopes. Other sources of energy come directly or indirectly form the sun: 
photovoltaic cells, wind, and hydroelectric. But eventually the sun will burn 
out, as its lighter atoms are converted to heavier ones through fusion. The same 
is true for other stars, and there is also greater entropy as the universe expands 
and the density of hydrogen available to form new stars decreases. The uni-
verse is gradually running out of low entropy or order. When very little order 
remains, the universe will suffer what is called heat death.

Entropy is distinctive among the most important physical properties in that, 
as  it always increases, it is not conserved. Physicists frequently use conser-
vation laws to understand physical processes. Some important conserved 
quantities are mass–energy, electric charge, linear momentum, and angular 
momentum. Entropy, however, is not conserved but rather tends to grow 
whenever physical systems interact or work is performed.

6.3  MAXWELL–BOLTZMANN STATISTICS

Much of the foundation for statistical thermodynamics was laid in the middle 
to late nineteenth century by James Clerk Maxwell in Britain and Ludwig 
Boltzmann in Austria. This section introduces the fundamentals of the aptly 
named Maxwell–Boltzmann statistics.

6.3.1  Boltzmann factor and probability

The model shown in Figure 6-8 can be used to derive a general result of great 
importance in classical statistical physics. In this model a system of interest 
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labeled A is connected thermally to a much larger reservoir R. The two sys-
tems can exchange energy through a diathermal wall, but the total energy 
E0 = EA + ER must be constant. The probability of a given energy state EA is 
proportional to the total multiplicity of the system and reservoir. However, 
as discussed in Section 6.1, the reservoir’s multiplicity of states is much 
larger than that of the system A, so we can ignore the latter and say that the 
probability of a state with system energy EA is proportional to Ω(ER), with 
the stipulation ER = E0 − EA. This probability is then proportional to

	 eS E k( )R B/
	

where we have used the relation S = kB ln Ω.

For the multiplicity Ω(ER) the corresponding entropy is S(ER) = S(E0 − EA). 
Expanding this function in a Taylor series about the total energy E0,

	
S E S E E

S
E

( ) ( )R 0 A= − ∂
∂

+�
	

Neglecting higher-order terms in the expansion and recognizing from the 
thermodynamic identity that 1/T = ∂S/∂U:

	
S E S E

E
T

( ) ( )R 0
A= −

	

Therefore the probability of a state with system energy EA is proportional to

	 e e eS E E k T S E E k T( ) ( )0 0− −=A B A B/ /
	

System A
EA

Adiabatic wall

ER
Reservoir R

Fixed diathermal wall

Figure 6-8  A small system A in contact with a large thermal reservoir R. The total energy 
E0 = EA + ER is constant.
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The probability of a given energy state EA is therefore proportional to e E k T− A B/ , 
which is called the Boltzmann factor. In the general case the subscript A can be 
dropped, so

To find an exact expression for computing probability rather than dealing 
with simple proportions, remember the approach of flipping coins in Section 
6.1. Consider a system with quantized energy levels like the one shown in 
Figure 6-9. Often quantized energy levels are degenerate, meaning that more 
than one state has the same energy. The quantity called degeneracy is defined 
as the number (gi) of states having the same energy (Ei). Taking degeneracy 
into account, the sum of the Boltzmann factors for all states is defined as the 
partition function Z:

In the preceding argument E and U can be used interchangeably, 
because all the energy is internal.

	 Boltzmann factor / B= −e E k T

	
(6.10)

Energy

gi quantum states
with energy Ei

Ei

E3

E2

E1

Figure 6-9  Energy levels in a quantum system. Each energy level Ei has a corresponding 
degeneracy gi.
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and then the probability of a state with energy Ei is

You can easily verify that this approach guarantees that the sum of all prob-
abilities is exactly 1. Equation 6.12 is the fundamental result in classical 
statistical mechanics.

6.3.2  Some examples

As an example of how to apply this approach, consider a system made up only 
of hypothetical particles that have three available (nondegenerate) energy 
states, with energies 0, 1, and 2 eV. For a temperature of 300 K, Equation 6.11 
gives

	 Z = + × + × ≈− −1 1 6 1 2 5 1 117 34. . .0 0 00 	

and so Equation 6.12 gives for the probabilities of the three states

	 P P P( ) . ( ) ( )0 00 0 0eV 1 1eV 2 eV≈ ≈ ≈ 	

In other words, at T = 300 K essentially all of the particles are in the ground state.

For the same system at temperature T = 7500 K, the results are significantly 
different:

	 Z = + + ≈1 213 45 1 2580 0 0. . . 	

and

	 P P P( ) . ( ) . ( ) .0 0 0 0 0eV 79 1eV 17 2 eV 4≈ ≈ ≈ 	

	
P E

Z
g ei i

E k Ti( ) = −1 / B

	
(6.12)

	

Z g ei
E k T

i

i= −∑ / B partition function( )

	
(6.11)
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At higher temperatures there is more thermal energy available to promote 
some of the particles to higher energy states.

This result of this toy model is characteristic of quantum systems. As an 
example of a real system, consider hydrogen gas at the surface of a fairly hot 
star with T = 7500 K. For atomic hydrogen, we may take the first three energy 
levels to be 0, 10.2, and 12.1 eV. It is well known from atomic physics that 
(excluding spin) the ground state is nondegenerate, the first excited level at 
10.2 eV contains four states, and the second excited level at 12.1 eV contains 
nine states. From Equations 6.11 and 6.12, the partition function and prob-
abilities are

	 Z = + × + × ≈− −1 5 6 1 6 7 1 17 8. . .0 0 00 	

and

	 P P P( ) . ( . ) . ( . ) .0 0 0 0 0eV 1 1 2 eV 5 6 1 12 1eV 6 7 17 8≈ ≈ × ≈ ×− −
	

The 10.2-eV jump from the ground state to the first excited state is large enough 
compared with kBT ≈ 0.65 eV that relatively few excited states are populated, 
even at such high temperatures. However, the probability is large enough that 
these states are easily detected spectroscopically. (Just consider how many 
atoms are present at the surface of a star!)

The mean energy E  per particle is the average of energy over all the available 
states, weighted by the appropriate probability factor given by Equation 6.12. 
That is,

	

 E Ei

i

iP E=∑ ( )
	

(6.13)

For the example presented above with energy states 0, 1, and 2 eV, the mean 
energy at 7500 K is

	

  eV  eV  eVE Ei

i

iP E= + =∑ = +( ) ( )( . ) ( )( . ) .0 1 0 17 2 0 04 0 25

	

compared with an average energy close to zero at T = 300 K.
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6.4  IDEAL GASES

A statistical approach to thermodynamics can be applied effectively to the 
study of ideal gases. This analysis, originally due to Maxwell, provides an ele-
gant approach to understanding the macroscopic behavior of gases based on 
microscopic principles.

6.4.1  One-dimensional gas

Think of a monatomic gas consisting of identical molecules of mass 
m  that  are  free to travel only in one dimension, back and forth along the 
x-axis. Although this model is physically unrealistic, applying statisti-
cal methods to a one-dimensional gas yields some interesting results and 
illustrates the methods that will be needed to study a real gas in three 
dimensions.

In the classical limit, there are many states with energies Ei that are so closely 
spaced that it is reasonable to think of a continuous distribution of energies. 
For the one-dimensional ideal gas, the molecular energy is just the kinetic 
energy E mvx= 1

2
2, where all the molecules in the gas have the same mass m. 

For a nearly continuous distribution, the sum in Equation 6.11 can be replaced 
by an integral:

	

 / BZ e mv k Tx dvx= −

−∞

∞

∫ 2 2

	

The integral is taken over all possible velocity components vx, which can 
be both positive and negative for a gas of molecules free to travel in both 
directions. This is a standard Gaussian integral with result Z k T m= 2π B / . 
(See  Appendix  B for discussion of this and other definite integrals of this 
form.) Therefore by Equation 6.12 the one-dimensional gas follows a velocity 
distribution of the form

	
 

B

/ Bf v
m
k T

ex
mv k Tx( ) = −

2

2 2

π 	
(6.14)

This is a Gaussian distribution with respect to vx, which perhaps surprisingly 
has its peak (highest probability) at vx = 0. Notice that by symmetry the mean 
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value of vx is also zero, which is what might be expected for a gas of molecules 
that are equally likely to travel in either direction.

More information comes from computing the mean value of the square of vx, 
which is done by averaging vx

2 throughout the distribution in Equation 6.14:

	

 / B
/ Bv m k T v ex x

mv k Tx dvx
2 2 22

2= −

−∞

∞

∫π
	

This is another standard definite integral, with result

	
 v

kT
m

x
2 =

	
(6.15)

Two important results follow from Equation 6.15. First, the kinetic energy asso-
ciated with the mean is ( ) ( )1 2 1 22mv k Tx = B , in agreement with the equiparti-
tion theorem for a one-dimensional gas, which has only one degree of freedom. 
Second, the mean kinetic energy of a three-dimensional gas follows, because 
the results for the other directions y and z can be no different:
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This matches the prediction of the equipartition theorem (Section 3.4.1) and 
gives the correct rms speed of the gas

	
v

k T
m

rms
B= 3

	

as given by Equations 3.13 and 3.14.

The velocity distribution for a real three-dimensional gas follows from the one-
dimensional distribution in Equation 6.14. The three dimensions are indistin-
guishable from one another. Therefore, the three-dimensional distribution 
contains three factors, the first given in Equation 6.14 and the other two identi-
cal except that they contain vy and vz in place of vx. Thus the three-dimensional 
distribution is
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which simplifies to

	
 

B

/
/ Bf

m
k T

ev v vx y z
mv k T( , , ) = 



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−

2
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(6.16)

because  v v v vx y z
2 2 2 2= + + .

6.4.2  Maxwell speed distribution

For an ideal gas in three dimensions, the molecules move randomly, and it 
is useful to find an expression for the distribution of speeds that is analo-
gous to Equation 6.14 but in terms of the speed v rather than velocity com-
ponents.  The approach is similar to that for the one-dimensional gas in 
Section 6.4.1.

However, in calculating the partition function it is now necessary to include a 
degeneracy factor, analogous to the one included for atomic states in Section 
6.3.2. This factor arises because for a three-dimensional gas the velocity vector 
may be considered to lie within a three-dimensional phase space. The “point” 
of the vector lies on a hypersphere of radius v, and the “surface area” of the 
hypersphere is 4πv2, which is the effective degeneracy.

Therefore,

	

 / BZ v e mv k T dv= −
∞

∫4 2 2

0

2π
	

The limits on this definite integral are now zero to infinity, because only 
positive speeds are allowed. Evaluating the integral (see Appendix B),
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(6.17)

This result allows us to write the Maxwell speed distribution:

Maxwell speed distribution
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This function is shown in Figure 6-10. Notice that it is no longer sym-
metric like the purely Gaussian one-dimensional distribution, but 
rather rises more quickly at lower speeds and has a longer “tail” at higher 
speeds.  This shape has physical consequences that will be discussed in 
Section 6.4.3.

6.4.3  Characteristics of ideal gases

The Maxwell speed distribution contains a wealth of information that can be 
mined through statistical analysis. To begin (and to verify that the distribution 
is correct), the rms speed is found by computing the mean square speed  v2  
directly from the distribution:
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Figure 6-10  Maxwell speed distribution, showing key points on the graph: νmax, v , 
and νrms.
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This is another standard definite integral (Appendix B), with result
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and so v k T mrms B /= 3  as before.

Similarly, the mean speed v  is
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Evaluation of the integral (Appendix B) gives

	
 B Bv

k T
m

k T
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= =8 4

2π π 	
(6.19)

Finally, the most probable speed corresponds to the peak of the distribution in 
Equation 6.18 (Figure 6-10), which is found by setting df/dv = 0 and solving for 
speed, which is called vmax (for maximum probability). The result is

	
 max

Bv
k T
m

= 2

	
(6.20)

It is interesting to compare the three speeds vmax, v , and vrms, all of which are 
identified in Figure 6-10. Because they share the common factor k T mB / , the 
ratio of the speeds vmax : v : vrms is equal to  2 : 4/ 2π : 3 ≈ 1.00:1.13:1.22, with 
the ratios independent of temperature.

Figure 6-11 shows what happens to the distribution for a given sample of gas 
as its temperature changes. At temperature increases, the peak shifts to the 
right. This is as expected, because temperature is proportional to thermal 
energy, and the higher thermal energy appears as kinetic energy in the indi-
vidual molecules. The curve also broadens at higher temperatures, indicating 
the speeds are distributed more widely. This is in keeping with the constant 
ratios vmax: v : vrms discussed above.
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Different gases at a given temperature have speeds that vary inversely as m , 
so in a mixture of gases the lighter ones travel faster on average. For example 
in air at 273 K, nitrogen molecules (N2) have vrms = 493 m/s, but for slightly 
heavier oxygen (O2) vrms = 461 m/s.

The light inert gas helium, which is monatomic and has a mass of only 4 u, 
deserves special consideration. At 273 K helium has vrms = 1300 m/s. This is 
much faster than vrms for the most common gases in air: nitrogen, oxygen, 
argon, and water vapor. However, 1300 m/s is much less than the escape speed 
from Earth’s surface, which is just over 11 km/s. Why then does helium escape 
the atmosphere, while the heavier gases remain? Consider the Maxwell speed 
distribution (Figure 6-10). The fraction of helium atoms traveling faster than 
the escape speed is large enough that the number dissipates in time. This does 
not happen, however, for the heavier gases that remain. The loss of helium is a 
serious issue. Helium is a nonrenewable resource (except by renewal in small 
amounts through alpha decay). It is essential for scientific purposes, such as 
refrigeration to low temperatures, because of its low boiling point of 4.2 K at 
atmospheric pressure. Helium also has important medical uses (such as MRI) 
and industrial applications.

The preceding analysis implies that a planet must have a certain minimum 
size to retain important atmospheric gases such as oxygen and water vapor. 
This is a consideration for astrophysicists who study exoplanets and explore 

T = 300 K

T = 600 K

f (v)

Speed ν (m/s)
0 500 1000 1500 2000

Figure 6-11  Maxwell speed distribution for T = 300 K and T = 600 K.
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the possibility of life there. Our moon has no atmosphere, so obviously it falls 
below that minimum size, even though it is relatively large compared with 
most natural satellites in our solar system.

6.4.4  Distribution of energy

It is sometimes useful to express the Maxwell distribution in terms of 
energy E rather than velocity or speed. Instead of finding a partition func-
tion and degeneracy factor, it is easiest to use the speed distribution in 
Equation 6.18 and then transform it to an energy distribution f(E) using the 
fact that

	  f E dE f v dv( ) ( )= 	 (6.21)

Because E = (1/2)mv2, dE/dv = mv, and therefore by Equations 6.18 and 6.21:
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which, again using E = (1/2)mv2 simplifies to

	
 B

/ / / Bf E k T E e E k T( ) ( )= − −2 3 2 1 2

π 	
(6.22)

This functional form, with the distribution proportional to E1/2 and the 
Boltzmann factor e−E/kBT, is characteristic of classical distributions.

6.4.5  Maxwell’s demon

In his 1871 book Theory of Heat, Maxwell noted that the speed distribution in 
gases might provide a way to defeat the second law. As an example, he sug-
gested the following strategy, using a vessel filled with air:

The theory presented here matches experimental results for gases with 
nonrelativistic molecular speeds. When speeds are relativistic, the 
Maxwell distribution is replaced by the Maxwell–Jüttner distribution, 
which we shall not pursue here.
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Now let us suppose that such a vessel is divided into two portions, A and B, by a 

division in which there is a small hole, and that a being, who can see the indi-

vidual molecules, opens and closes this hole, so as to allow only the swifter mol-

ecules to pass from A to B, and only the slower ones to pass from B to A. He will 

thus, without expenditure of work, raise the temperature of B and lower that of 

A, in contradiction to the second law of thermodynamics.

Notice that the sorting has lowered the entropy of the universe, which is 
problematic, because it appears to violate the second law. Any temperature 
difference created in this manner might, for example, be used to run a heat 
engine and obtain work without any input of work. Later William Thomson 
(Lord Kelvin) coined the term Maxwell’s demon for such a hypothetical device, 
seizing on the fact that it would be a devilish accomplishment to defeat the 
second law. Other forms of the demon are easy to imagine. The demon 
described by Maxwell might pay no attention to speeds but simply allow all 
the molecules to pass in one direction, filling one half of the vessel. That would 
also lower the gas’s entropy (by doing the reverse of free expansion), and the 
resulting pressure difference could be used do work at no cost.

Despite these and many other ways people have imagined to use molecular 
motion to negate the second law, physicists currently believe that the second 
law is valid. The reasons are subtle and depend on the details of each type of 
demon. Maxwell’s original conception depended on precise measurements 
of the positions and velocities of individual molecules, so that the hole could 
be opened and closed in such a way to perform the imagined sorting. The 
measurement process involves some physical interaction, which may add 
enough entropy to the system to offset the entropy reduction created by the 
demon.

Leaving aside the measurement process, there are issues with the informa-
tion itself. Once the molecules have been measured and sorted, the infor-
mation about them does not simply go away. Rather, it must be erased, via 
some other physical process. In the 1960s Rolf Landauer showed that such 
erasure of information—necessary to complete a cyclic process—generates 
enough entropy to offset the demon’s gains. The connection between entropy 
and information is an interesting subject that impacts work on fundamental 
issues of computing.

In the twenty-first century, work continues into understanding whether the 
second law is rigorously followed in all processes, as other kinds of demons 
are imagined and studied. Some further insight into the rich literature on the 
subject is found in the compilation by Leff and Rex (2003).
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PROBLEMS

	 6.1	 (a) Use the thermodynamic identity to show that temperature can be 
computed using the following expression:

	

1
T

S
U V

= ∂
∂ 	

		  (b) Starting with either Equation 6.5 or 6.6, show that the relation you 
found in part (a) gives the correct result for the temperature of a mona-
tomic gas. Because of the difficulty involved in defining temperature 
in some situations, 1/T = ∂S/∂U provides a useful alternative definition, 
provided the entropy is known as a function of U.

	 6.2	 (a) Use the thermodynamic identity to show that pressure can be 
computed from the entropy function using:

	

P
T

S
V U

= ∂
∂ 	

		  (b) Starting with either Equation 6.5 or 6.6, show that the relation you 
found in (a) gives the correct result for the pressure of a monatomic gas.

	 6.3	 Verify that the sum of probabilities given by Equation 6.12 is 
exactly one.

	 6.4	U sing the shorthand notation β = 1/kBT, show that the mean energy 
of a system with partition function Z is

	
E

Z
Z= − ∂

∂
1

β 	

	 6.5	 The equipartition theorem says that there is a mean energy ½ kBT associ-
ated with each degree of freedom in a system. To prove this statistically, 
begin by assuming that the energy for some generalized coordinate x is 
quadratic and has the form Cx2 where C is a constant. Then the general 
form of the partition function is

	

 / BZ e Cx k T

x

= −∑ 2

	

		  (a) Assuming the states form a nearly continuous function in x, 
convert the sum to a definite integral by dividing the domain into small 
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finite intervals Δx. Evaluate the definite integral to find Z as a function 
of temperature. (b) Using the result of Problem 6.4, show that the mean 
energy for a single degree of freedom agrees with the equipartition the-
orem. (c) Show that your result in part (a) is consistent with the partition 
function  /BZ k T m= 2π  derived in the text for a one-dimensional gas.

	 6.6	 In quantum mechanics a particle of mass m confined to a one-
dimensional infinite potential well of width L has quantized energy states

	
 E

n h
mL

=
2 2

28 	

		  where the quantum number n is restricted to positive integers. (a) Write 
the partition function for a single particle in one dimension in the form 
of a sum over all possible quantum numbers n. Change the sum to an 
integral and thereby show that for this system

	
 BZ L

mk T
h

= 2
2

π

	

		  (b) Argue that for a three-dimensional box of volume V, the single-par-
ticle partition function becomes

	
 B

/

Z V
mk T
h

= 





2
2

3 2π

	

		  (c) As shown in Section 6.2.5, the result in (b) scales to 

 B
/

Z
V N N

N
mk T
h

= 



!

2
2

3 2π
for a gas of N particles. Use the result of Problem 

6.4 to show that the mean energy of a particle in this system is 
3
2

Bk T , in 

agreement with the equipartition theorem.

	 6.7	 In purely rotational systems angular momentum L is quantized 
according in the form

	  L2 21= +� �( )� 	

		  where ℓ is a quantum number 0, 1, 2, …. The rotational kinetic energy is 
L2/2I, where I is rotational inertia. Consider the rotation of a diatomic 
molecule such as CO. (a) Show that the molecule’s rotational energy 
is quantized in the form E = ℓ(ℓ + 1)E0 , where E0 = ħ2/2I. (b) Write the 
partition function as a sum over angular momentum states ℓ. (Note that 
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the degeneracy of any state ℓ is 2ℓ + 1.) (c) If kBT ≫ E0, it is reasonable to 
convert the sum to a definite integral. Write the integral and evaluate it. 
(d) Use the result of Problem 6.4 to find the mean energy of a rotational 
molecule, valid in the high-temperature limit. Show that the result is 
consistent with the equipartition theorem. (e) Explain why the partition 
function of a homopolar molecule such as O2 is half the value you found 
in part (c).

	 6.8	 The molecule CO has a bond length 113 pm. (a) Evaluate the molecule’s 
rotational inertia around an axis through its center of mass and per-
pendicular to the bond axis. (b) Use the result of Problem 6.7 to find the 
constant E0 and partition function Z at T = 293 K. Discuss the validity of 
the approximation kBT ≫ E0 at that temperature.

	 6.9	 Consider a paramagnetic material in which each atom has a magnetic 
moment in one of two possible orientations, called up and down, which 
means that each magnetic moment 

�
µ  points parallel (up) or antiparallel 

(down) with respect to an applied magnetic field B
��

. The energy of a mag-
netic moment in the field is U B= − ⋅

� ��
µ . (a) Find the partition function for 

a single magnetic moment. (b) Find the mean magnetic moment when 
a magnetic field B

��
 is applied at temperature T. (c) Explain why your 

answer to (b) makes sense at extremely low and high temperatures.
	 6.10	 For atomic hydrogen, the allowed energy levels are given by the Bohr 

equation

	
 

 eV
En

n
= − 13 6

2

.

	

		  which gives energies of −13.6, −3.4, and −1.5 eV for the first three energy 
levels. Rework the example in Section 6.3.2 with atomic hydrogen 
at 7500 K using these three energy levels. Compute (a) the partition 
function and (b) the probabilities of the first three levels. (c) Compare 
your results with the example in the text.

	 6.11	 Show that if quantized energy levels in a system are all changed by an 
additive constant E0, then the resulting probabilities given by Equation 
6.12 are unchanged.

	 6.12	 Suppose there is a quantized system that can be in one of three energy 
states, having energies 0, 0.2, and 0.4 eV, respectively. The system is at 
5000 K. (a) Compute the partition function for this system. (b) Find the 
mean energy. (c) Compute the probability that each of the three states 
will be occupied.

	 6.13	 In his 1884 book Flatland, Edwin Abbot dreamed of a two-dimensional 
world. (a) Find the ideal gas speed distribution analogous to 
Equation 6.18 for such a world. (b) Find the mean kinetic energy for a 
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monatomic gas as a function of temperature, and show that your result 
is consistent with the equipartition theorem.

	 6.14	L aser cooling is a technique by which an already cold gas is cooled even 
further. If a molecule traveling toward a laser absorbs a photon, the 
collision slows the molecule and effectively cools the gas. In a typical 
experimental setup, the gas consists of rubidium atoms (m = 85 u), and 
the laser wavelength is 780 nm. Find the rms speed of a rubidium atom 
if the effective temperature is (a) 1.0 µK and (b) 1.0 nK. (c) An atom with 
the rms speed in the 1.0 µK gas absorbs a photon head-on. By what frac-
tion is its speed reduced?

	 6.15	 In World War 2, scientists at Oak Ridge Tennessee (USA) used gaseous 
diffusion as one method of separating the uranium isotopes 235 
and 238, in order to obtain higher concentrations of the fissionable 
235 isotope, which has a natural abundance of less than 1%. To accom-
plish this, natural uranium was put into the form of a gas UF6 and then 
allowed to diffuse through a porous barrier. (a) What is the difference 
in the rms speeds of UF6 molecules consisting of the two isotopes at 
T = 300 K? (b) Repeat part (a) if the temperature is raised to 800 K.

	 6.16	 (a) For nitrogen molecules at T = 273 K, find vmax,v , and vrms. (b) Use 
numerical integration to find the fraction of nitrogen molecules mov-
ing faster than vmax, the fraction moving faster than v , and the fraction 
moving faster than vrms. (c) Do your results in (b) depend on the type of 
molecule (monatomic, diatomic, etc.) or the temperature? Explain.

	 6.17	 Temperatures in the thermosphere (in the upper atmosphere) can be 
800 K or higher. (a) For a temperature of 800 K, perform a numerical 
integration to compare the fraction of nitrogen molecules traveling 
faster than 11 km/s (escape speed). (b) Repeat for helium at the same 
temperature. (c) Compare the results from (a) and (b), and explain why 
the atmosphere contains nitrogen but not helium.

	 6.18	R adioactive isotopes of radon gas are released from materials used in 
houses. The most common isotope is radon 222, which comes from the 
decay chain of uranium 238. Radon 222 is an alpha emitter that can 
cause lung cancer when inhaled in sufficient quantities. Because of its 
heavy mass, radon gas tends to remain in houses and build in concen-
tration over time. To understand why, compare the rms speed of this 
(monatomic) radon isotope with nitrogen at T = 293 K.

	 6.19	U se the energy distribution f(E) from Section 6.4.4 to find the mean 
energy of a molecule in a monatomic ideal gas. Show that your result is 
consistent with the equipartition theorem.

	 6.20	 Show that each of the following distributions is normalized, that is, 
that when summed (integrated) over all possible values, they yield a 
total probability of 1: (a) Maxwell velocity distribution (Equation 6.14); 
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(b) three-dimensional velocity distribution (Equation 6.16); 
(c) Maxwell speed distribution (Equation 6.18); and (d) energy distribu-
tion (Equation 6.22).

REFERENCES

Leff, H.S. and Rex, A.F., Maxwell’s Demon 2, IOP Publishing, Bristol, England, 2003.

Maxwell, J.C., Theory of Heat, Longmans, Green, & Co., London,  1871.



http://taylorandfrancis.com


163

Chapter 7:  The Thermodynamic 
Potentials and the Maxwell Relations

This chapter introduces a number of new quantities, in particular the so-
called thermodynamic potentials, which are needed to provide impor-
tant links between theoretical and experimental work. This is all based on 
previous chapters and concepts with which you are already familiar, so a brief 
review is in order.

7.1  THERMODYNAMIC POTENTIALS

In the formulation of thermodynamics to this point, you have seen how 
the first law makes it possible to define the internal energy U as the sum of 
the  random kinetic and potential energies of the component particles of the 
system. The  second law allowed a definition of the entropy S. The two laws 
were combined into the thermodynamic identity

	 TdS dU P dV= + 	 (7.1)

This equation is identically true in that it holds for both reversible and irrevers-
ible infinitesimal processes. The power of this equation has been evident in 
the preceding chapters and will be again in this and the following chapters. 
However, although its physical interpretation is clear, U is not well suited for 
the analysis of certain thermodynamic processes. It is convenient to intro-
duce three additional state functions, closely related to U, all of which have the 
dimensions of energy. These functions are the enthalpy H, which was defined 
in Chapter 3; the Helmholtz function F; and the Gibbs function G. These func-
tions provide a more direct link with experiment than can be obtained with 
the use of U alone. There is a fifth function, the chemical potential, μ, which 
is useful in discussing the thermodynamics of open systems where the mass 
of the system is not constant; however, the discussion of μ will be deferred 
until Chapter 11. The four functions U, H, F, and G have a wide applicabil-
ity throughout thermodynamics, and as a set they are referred to as the four 
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thermodynamic potentials. The next few sections present their properties in 
turn. In the course of this discussion, we present four extremely useful general 
thermodynamic relations among the four variables P, V, T, and S—the four 
Maxwell relations.

7.2  INTERNAL ENERGY

Equation 7.1 gives for the internal energy U

	 dU TdS P dV= − 	 (7.2)

This equation is independent of the type of process used, and so any relations 
obtained from it are general ones.

The form of Equation 7.2 suggests that U may be written in terms of the inde-
pendent pair of variables S and V as U = U(S, V), where the notation U(S, V) 
denotes a function of S and V. Hence,

	
dU

U
S

dS
U
V

dV
V S

= ∂
∂





 + ∂

∂




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(7.3)

Comparing Equations 7.2 and 7.3,
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U
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P
U
VV S
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∂
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
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∂
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


and

	
(7.4)

This means that, if U can be expressed in terms of its so-called natural variables 
V and S, then these derivatives allow you to find T and P. Further, because U is 
a state function, dU is an exact differential. Using the condition for a differen-
tial to be exact (Equation B.15 of Appendix B) in Equation 7.2
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
 = − ∂

∂






T
V

P
SS V 	

(7.5)

This is the first so-called Maxwell relation. Notice that the natural variables of 
U, namely S and V, are the quantities appearing outside the partial derivatives.
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The results of this section can be used to derive two useful expressions for the 
heat capacity at constant volume CV = đQV/dT, where the heat has to be put in 
reversibly. It follows from Equation 7.2 that in a constant volume (or isochoric) 
process

	 TdS dU= ( )isochoric 	 (7.6)

Also, TdS = đQ for a reversible process, and it follows from this and Equation 7.6 
that for a reversible isochoric process

	 CQ dUV = ( )reversible and isochoric 	 (7.7)

Hence,
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(7.8)

and
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(7.9)

7.3  ENTHALPY H

In Chapter 3, enthalpy H was defined as

	 H U PV= + 	 (3.7)

This is a state function, because all the quantities on the right side take unique 
values for each state. Differentiating,

	 dH dU P dV V dP= + + 	 (7.10)

Notice that Equation 7.8 agrees with Equation 3.6, which was derived 
using the first law.
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Using Equation 7.1

	 dH T dS V dP= + 	 (7.11)

This equation holds for both reversible and irreversible processes by the same 
argument that was used to show that the thermodynamic identity was inde-
pendent of the type of process, namely that the equation involves only state 
functions on each side. Again, as this equation is independent of the type of 
process, any relations obtained from it are general ones.

Following the same process as in Section 7.2 for internal energy U, it is useful 
to write H = H(S, P) and evaluate the exact differential:
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(7.12)

Comparing this equation with Equation 7.11,

	
T

H
S

V
H
PP S

= ∂
∂





 = ∂

∂




and

	
(7.13)

This means that, if you know H in terms of its natural variables S and P, you can 
find both the temperature and the volume. Further, using the condition for dH 
in Equation 7.11 to be an exact differential,
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(7.14)

This is the second Maxwell relation, with the natural variables S and P appear-
ing outside the partial derivatives.

The most important property of enthalpy is that the change in H is equal to the 
heat flow in an isobaric, reversible process. This result was found in Chapter 3 
in the infinitesimal form as Equation 3.9

	 CQ dHP =  isobaric and reversible( ) 	 (7.15)

This result can also be obtained directly from Equation 7.11, which gives 
dH = TdS for an isobaric process. Because TdS = đQ for a reversible process, 
Equation 7.15 then follows.
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There are two useful expressions for the heat capacity at constant pressure, 
CP = đQP/dT where the heat has to be added reversibly. From Equation 7.15,
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(7.16)

Also, because TdS = đQ for a reversible process,
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(7.17)

In Section 3.3.1, it was noted that the enthalpy change in a chemical reaction 
taking place under constant external pressure is equal to the heat of reaction. 
This is the situation that normally holds in chemistry, because most reactions 
occur under constant atmospheric pressure. The important point is that this 
result holds for a chemical reaction, even though this change is irreversible in 
the thermodynamic sense in that the system does not go through a series of 
equilibrium states. Of course, a chemical reaction can be made to go the other 
way, but this usually requires a finite (as opposed to an infinitesimal) change 
in the external conditions of temperature and possibly pressure. Therefore, 
chemical reactions cannot in general be regarded as thermodynamically 
reversible.

To see this, imagine the chemicals being contained in a cylinder fitted with 
the usual light, frictionless piston as in Figure 7-1. Suppose the volume of 
the chemicals changes by ΔV, say by a gas being produced, and that the heat 
of reaction Q is given to the chemical system. This will push the piston back 
against atmospheric pressure P0 until it comes to rest again when the reaction 
is over. The external work done by the system is then P0ΔV. Applying the first 
law to this system,

	 ∆ ∆U Q P V= −  0 	 (7.18)

so

	 Q U P V U PV= + = +∆ ∆ ∆ ∆0 ( ) 	 (7.19)

Notice that Equation 7.16 agrees with Equation 3.10, which was derived 
using the first law.
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The last step in Equation 7.19 follows from the fact that the pressure P = P0 at 
the start and end of the process, even though it may vary during the reaction. 
It follows immediately that

	
Q H = ∆

	 (7.20)

which is the desired result. Notice that the only restriction made was the one 
of constant external pressure.

This important result is often developed erroneously in the following manner. 
Equation 7.11 gives for an infinitesimal process

	 dH TdS VdP= + 	

If this process is reversible and isobaric so that TdS = dQ and dP = 0, then 
dH = dQ and ΔH = Q for a finite process, which appears to be the required 
result. However, as explained above, chemical reactions are not generally 
reversible, and so this argument is inapplicable.

7.4  HELMHOLTZ FUNCTION F

This state function is designed for problems in which temperature and volume 
are the important variables and is also of value in statistical mechanics. It is 
defined as

P0

P Q

Reacting chemicals

Figure 7-1  A chemical reaction occurring under conditions of constant external pressure. 
The heat of reaction is Q = ΔH.
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For an infinitesimal change,

	 dF dU TdS SdT= − − 	 (7.22)

Using Equation 7.1,

	 dF PdV SdT= − − 	 (7.23)

Again, this equation is independent of the type of process, so any relations 
obtained from it are general ones. The form of Equation 7.23 suggests that the 
natural variables of F are V and T, so symbolically F = F(V, T). Hence,
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(7.24)

Comparing coefficients in Equations 7.23 and 7.24,
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(7.25)

Hence, if you know F as a function of volume and temperature, you can find 
both the entropy and the pressure.

Because F is a function of state, dF is an exact differential. The condition for an 
exact differential in Equation 7.23 gives
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(7.26)

This is the third Maxwell relation, with the natural variables V and T appear-
ing outside the derivatives.

There are some additional properties of F, discussed in the sections that follow 
in the remainder of Section 7.4.

Helmholtz function F:

	 F U TS= − 	 (7.21)
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7.4.1  Maximum work from a system with ΔT = 0

In a purely mechanical system, the principle of conservation of mechanical 
energy says that the work performed by the system is equal to the decrease in 
potential energy. In thermodynamics, however, the situation is complicated 
by the fact that energy can also be exchanged between the system and the sur-
roundings in the form of heat, and so there is more to the relation between 
the work performed and the change of energy. Fortunately, there is a simple 
expression for the work performed by a system that is in thermal contact 
with the surroundings at T0. This means that the end points of the process 
are at T0, although the intermediate states traversed by the system are not 
necessarily at T0.

Suppose the system is in thermal contact with a heat reservoir at T0, as in 
Figure 7-2, and let heat Q pass from the reservoir into the system. The system 
and reservoir are surrounded by an adiabatic wall to exclude any other heat 
flow. The system may perform work W; this may be volume work, because its 
walls are not necessarily rigid, or work in another form such as electrical work. 
The principle of increasing entropy gives

	 ∆ ∆S S+ ≥0 0 	 (7.27)

where ΔS and ΔS0 are the entropy changes of the system and the reservoir. But 
because the temperature of the reservoir is unchanged at T0, ΔS0 = −Q/T0, and 
Equation 7.27 becomes

	

∆S Q
T
− ≥
0

0
	

System Adiabatic wall

T0
Reservoir

WQ

Diathermal wall (allowed to move)

Figure 7-2  A system in thermal contact with a reservoir at T0. The system performs work 
W equal to the decrease in F.
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or

	 Q T S− ≤0 0∆ 	 (7.28)

This is a familiar result, having appeared in differential form as 
Equation 5.7. Applying the first law to the system,

	 ∆U Q W= − 	 (7.29)

Substituting for Q, given by Equation 7.29, into Equation 7.28

	 ∆ ∆U W T S+ − ≤0 0 	

or

	 ∆( )U TS W− + ≤ 0 	 (7.30)

because the temperature T of the system at the end points is T0. The expression 
in brackets in Equation 7.30 is just the Helmholtz function F for the system, 
and so

	 W F T≤ − =∆ ∆( )0 	 (7.31)

The equality sign holds for a reversible process, which produces the maximum 
amount of work. Hence,

Such processes are commonly encountered. Alternately, F is the amount of 
work that must be done to create a system out of nothing at constant tem-
perature. This can be seen by Equation 7.21, where U is the internal energy of 
the system created and TS is the heat that can be absorbed “for free” from the 

Equation 7.29 contains a minus sign on the work term, because as noted 
above this analysis concerns work done by the system, which is the oppo-
site of the work done on the system.

In a process in which the end point temperatures are the same as the 
surroundings, the maximum work obtainable is equal to the decrease 
in the Helmholtz function.
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environment at temperature T. Because of this interpretation, F is often called 
the Helmholtz free energy.

It should be emphasized that T does not have to be held constant in an isother-
mal process at T0 for Equation 7.31 to hold but rather has to assume this value 
only at the end points. A less general proof of Equation 7.31 follows immedi-
ately from Equation 7.23 for the special case of an isothermal process. In that 
case −dF = PdV = dWrev.

7.4.2 � Equilibrium condition for a system held 
at constant volume and temperature

There is a simple argument to show that the equilibrium condition for a system 
in thermal contact with a heat reservoir and held at constant volume is one of 
minimum F. To see this, consider the system shown in Figure 7-3. The system 
is in thermal contact, via a diathermal wall, with a reservoir at a temperature 
T0, so that its temperature T is also T0. Let the volume of the system be fixed 
at V. The combined system of the system and the reservoir is surrounded by 
an adiabatic wall, as in the previous section.

In some other books, you will see the Helmholtz function given the sym-
bol A after the German word for work, Arbeit. In Section 7.6, we will use 
the symbol A for a different function, called availability.

System Adiabatic wall

T0
Reservoir

QT V
Fixed diathermal wall

Figure 7-3  A system in thermal contact with a reservoir at T0. The volume of the system is 
fixed. The condition for equilibrium is that F is a minimum.
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If the system is a simple one consisting of a fixed mass of homogeneous 
material, then specifying the temperature and volume of the system fixes its 
state, and there is complete or thermodynamic equilibrium; clearly, no further 
changes can occur. However, other internal degrees of freedom may exist 
within a more complex system, so that it may not be in a state of thermody-
namic equilibrium even though the temperature and the volume have been 
specified. An irreversible process can then occur involving the transfer of heat 
Q from the reservoir to the system as it tends toward equilibrium.

As an example of what is meant by an extra degree of freedom, imagine a 
chemical reaction occurring within the system

	 A B AB+ → 	

with the ratio of the amount of product AB to the amount of reactant A or B being 
a variable quantity that changes as equilibrium is approached. Alternatively, 
there could be a mixture of ice and water within the system, with the ratio of 
ice to water varying until equilibrium is reached. In both of these examples, 
heat is transferred between the system and the reservoir; this is the heat of 
reaction for the chemical reaction and the latent heat for the melting of the ice.

In an irreversible process taking the system and the reservoir toward equi-
librium, ΔF for the system is necessarily negative (and ultimately zero at 
equilibrium). In order to prove this, it is first necessary to examine exactly 
what is meant by ΔF. To help with this discussion, consider the specific exam-
ple of a mixture of ice and water reaching equilibrium. The concept of a well-
defined final F causes us no difficulty, because the final state is an equilibrium 
state and the total F = Fice + Fwater. However, how can there be a free energy for 
the initial nonequilibrium state? The argument is exactly the same as the one 
employed in Section 5.3.2 for the entropy of a bar with a temperature gradi-
ent in a nonequilibrium state. At the beginning of the process, and also at any 
stage, imagine separating the ice and water so that there is again an equilib-
rium situation. One may then add F = Fice + Fwater as before to give a definite F 
for the system. In this way, ΔF for the process is defined.

Why then is ΔF ≤ 0? To see this, first assume that the process takes place iso-
thermally at T0 and at the constant volume V. As the combined system of the 
system and the thermal reservoir is thermally isolated from the rest of the uni-
verse by the adiabatic wall, it follows from the principle of increasing entropy 
and from Equation 7.28 that Q - T0ΔS ≤ 0, where ΔS is the entropy change of the 
system. Applying the first law to the system, and remembering that no work is 
done because the volume is constant at V,
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	 ∆U Q= 	 (7.32)

Substituting for Q in Equation 7.28,

	 ∆ ∆U T S− ≤0 0 	

or

	 ∆ ∆U TS− ≤( ) 0 	 (7.33)

because the temperature T is fixed at the constant value of T0 for the process 
under consideration. Rewriting Equation 7.33,

	 ∆( )U TS− ≤ 0 	

or

	 ∆F ≤ 0 	 (7.34)

As always, because F is a state function, the decrease ΔF in the Helmholtz 
function is the same for any process between a given pair of equilibrium 
states. Thus, Equation 7.34 holds in general for any process between a pair of 
states at the same temperature and volume, and not just for the special iso-
choric and isothermal process just considered. It is important to realize that 
the temperature and volume do not have to be fixed at T0 and V during the 
process for Equation 7.34 to hold, but that they have these values only at the 
end points. Indeed, in the example of a chemical reaction, the temperature 
will almost certainly change during the reaction before settling back to T0 
when it is over.

Equation 7.34 shows that, for a system in thermal contact with a heat reser-
voir and in which the volume is held constant, spontaneous changes in the 
system (changes that occur of their own accord without the further influence 
of an agency external to the system and the reservoir) occur in the direction 
of decreasing F. Eventually, the system will reach thermodynamic equilib-
rium. There are then no further finite changes in the state variables of the sys-
tem, and F will reach a minimum. As equilibrium is approached, the process 
becomes reversible (no finite temperature differences between the system 

This discussion excludes any other types of work such as magnetic work.
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and the surroundings), and dF = 0. This is allowed by the equality part of 
Equation 7.34. Hence,

Finally, there are two important points to remember. The first is that the 
actual nonthermal restriction imposed on the system is that it is not allowed 
to do any work on the surroundings. Holding V constant for a PVT system 
ensures that this is so. The second is that, minimizing F for the system is 
done by maximizing the entropy of the system and the reservoir. A change 
in F of the system automatically looks after the changes in S for both the sys-
tem and the reservoir when the two are in thermal contact and the volume 
is fixed.

As an illustration of these ideas, consider the formation of vacancies in a 
solid. A simple model of a crystalline solid is a regular array of atoms such as 
shown in Figure 7-4, which shows the atoms to be arranged in a cubic array. 
(Polonium is a pure element that takes this form.) Suppose that the crystal 
is in thermal contact with the surroundings at a temperature T, and the vol-
ume V of the crystal is fixed. Now, it is possible for one of the atoms, if it gains 
enough thermal energy, to break free from the bonds of its neighbors and to 
migrate to a new position in the crystal, leaving behind a vacancy. The migrat-
ing atom will sit in a new position either in an interstitial position between 
two other atoms or will fill a vacancy site that has previously been vacated 
by another atom. The question is “How many vacancies are to be expected 
at thermal equilibrium at a given temperature?” Because it costs energy to 
break the bonds and for each vacancy to be formed, an initial answer to the 
question is that there should be no vacancies at all, as this will minimize the 

The condition for thermodynamic equilibrium in a system in thermal 
contact with a heat reservoir and maintained at constant volume is 
that the Helmholtz function is a minimum.

Interstitial atom

Vacancy

Figure 7-4  Vacancy formation in a crystal.
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internal energy U. However, as has just been shown, it is not internal energy 
U that is minimized, but rather the Helmholtz function F = U − TS of the crys-
tal, consistent with maximizing the entropy of the system and its surround-
ings. Every time a vacancy is formed, S increases and it is possible to calculate 
the entropy of a set of n vacancies sitting in the crystal. (See Guenault (2007) 
Section 10.3 for discussion.) Thus, any increase in U resulting from the forma-
tion of vacancies will eventually be more than beaten by the TS term. At a high 
enough temperature, the result is a lowering of F. This means that vacancies 
will occur.

7.4.3 � Bridge between thermodynamics 
and statistical mechanics

It is through the Helmholtz free energy that an important link between statisti-
cal mechanics and thermodynamics is made. Recall from Chapter 6 (Equation 
6.11) that the partition function is

	
 BZ g ei

E k T

i

i= −∑ /

	
(7.35)

where gi is the degeneracy of a quantum state with energy Ei. The Helmholtz 
function can be written in terms of the partition function as

	 F Nk T Z= − B ln 	 (7.36)

for the N particles making up the system, providing that they are only weakly 
interacting and are distinguishable from each other. (We will not prove this 
result, but it is proven elsewhere. See for example Guenault (2007) Section 2.5. 
Another version of the proof is left to Problem 7.17 at the end of this chapter.) 
This important relation is known as the bridge equation for the so-called 
canonical distribution in statistical mechanics. Once the partition function 
has been evaluated, F can be obtained using Equation 7.36. From this, the state 
functions S and P can be evaluated using Equation 7.25. The thermodynamic 
description of the system is then known.

As a simple illustration of these ideas, consider a two-level system of N weakly 
interacting distinguishable particles, where each particle can exist in one of 
two nondegenerate quantum states with energies 0 and ε. (For example, such 
a system could be a collection of electron spins, as in a paramagnetic salt, in a 
magnetic field.) Then,



7.5  GIBBS FUNCTION G    177

	 Z e e ek T k T k T= + = +− − −0 1/ / /B B Bε ε
	

So by Equation 7.36,
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which gives the variation of entropy with temperature. At low temperatures 
(kBT ≪ ε), this expression approximates to S = 0, while at high temperatures 
(kBT ≫ ε), it yields S = NkB ln 2. These results are consistent with Equation 6.3. 
In the high-temperature limit, each particle has sufficient thermal energy to 
be able to occupy either of the two energy levels, and so Ω = 2N, giving the 
S = NkB ln 2 result again. Also, in the low-temperature limit, each particle can 
occupy only the lowest level, so Ω = 1N = 1 with S = 0. The statistical (parti-
tion function) approach has done much more than this; it has given the actual 
temperature variation of S.

In general, the partition function is an invaluable tool in the calculation of 
the bulk thermodynamic properties of a system using statistical mechan-
ics, especially when more complicated systems are considered than the 
one here.

7.5  GIBBS FUNCTION G

This state function is designed for use in problems where pressure and tem-
perature are the important variables. It is of enormous importance in chem-
istry and in the study of systems where there is a mixture of two phases of a 

Gibbs function G:

	 G H TS= − 	 (7.37)
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substance, such as a mixture of ice and water; these systems will be discussed 
in Chapter 10. The Gibbs function is defined as

For an infinitesimal change,

	 dG dH TdS SdT= − − 	

Using Equation 3.7, this becomes

	 dG dU PdV VdP TdS SdT= + + − − 	

It follows from Equation 7.1 that

	 dG VdP SdT= − 	 (7.38)

Again this equation is independent of whether or not the process is reversible 
and so any relations derived from it are general ones. The natural variables of 
G are P and T. Equation 7.38 shows that, in any process that takes place at con-
stant T and P, the Gibbs function is unchanged.

The form of Equation 7.38 suggests that G = G (P, T). Hence,
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(7.39)

Comparing the coefficients in Equations 7.38 and 7.39,
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(7.40)

Hence, if you know G as a function of P and T, you can find the volume and the 
entropy.

As G is a state function, dG is an exact differential. Using the condition for an 
exact differential in Equation 7.38,
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This is the fourth Maxwell relation, with the natural variables P and T appear-
ing outside the partial derivatives. There are some further important proper-
ties of G, which are detailed in the following sections.

7.5.1  Thermal and mechanical equilibrium

In Section 7.4, you saw that a system held at constant volume and in thermal 
contact with a heat reservoir assumes an equilibrium state which is one of 
minimum F. Now, it will be shown, again using the principle of increasing 
entropy, that a system in thermal and mechanical contact with a heat and 
pressure reservoir moves to an equilibrium state of minimum G.

The reservoir employed for this purpose must be so large that its tempera-
ture and pressure remain unchanged, whatever is done to it. This result for 
the minimization of G is of enormous importance, because the conditions 
described are exactly the ones encountered in many natural processes, where 
the surrounding atmosphere at P0 and T0 acts as a pressure and heat reservoir. 
Examples of such processes include most chemical reactions and phase 
changes.

Consider the system shown in Figure 7-5, which is in contact with a heat and 
pressure reservoir at T0 and P0 via a diathermal piston that is weightless, free, 
and frictionless. As in the previous discussion of F, let there be some internal 
degree of freedom in the system so that it is not in thermodynamic equilibrium. 
As before, let heat Q pass from the reservoir to the system in a spontaneous 

System
Adiabatic wall

Free diathermal wall

T0P0
Reservoir

T P
Q

Figure 7-5  A system in contact with a reservoir at T0 and P0. The pressure and tempera-
ture of the system at the end points are maintained at P0 and T0 because the interven-
ing wall is diathermal and can move freely. The condition for equilibrium is that G is a 
minimum.
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process from an initial nonequilibrium state at P0 and T0 to a final equilib-
rium state also at P0 and T0. The change ΔG in the Gibbs function is defined in 
exactly the same way as ΔF in Section 7.4.2. The following argument will show 
that ΔG must be negative if the process is irreversible.

First consider what would happen if this process were both isothermal and 
isobaric. Because the combined system of the system and the reservoir is 
thermally isolated from the rest of the universe, it follows from the principle 
of increasing entropy, exactly as in Section 7.4, that Q − T0 ΔS ≤ 0 (Equation 
7.28), where ΔS is the entropy change of the system. Applying the first law to 
the system,

	 ∆ ∆U Q P V= − 0 	 (7.42)

where W = -P0ΔV, excluding other types of work, such as magnetic work. 
Substituting for Q using Equation 7.28,

	 ∆ ∆ ∆U P V T S+ − ≤0 0 0 	

or

	 ∆ ∆ ∆U PV TS+ − ≤( ) ( ) 0 	 (7.43)

because the pressure and temperature of the system are fixed at the con-
stant values of P0 and T0 for the process under consideration. Rewriting 
Equation 7.43,

	 ∆( )U PV TS+ − ≤ 0 	 (7.44)

or

	 ∆G ≤ 0 	 (7.45)

The argument as presented holds for an isothermal, isobaric process. 
However, because G is a state function, the decrease in G is the same for any 
process between this pair of end point states as it is for the isothermal, iso-
baric process. Thus, Equation 7.45 holds in general for a process between a 
pair of states at the same temperature and pressure as the surroundings. 
It is important to realize that the temperature and pressure do not have to 
remain fixed at T0 and P0 during the process for ΔG ≤ 0 to hold, only that they 
assume these values at the end points. Indeed, in a chemical reaction, the 
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temperature, and possibly the pressure, will almost certainly change before 
setting back to the ambient temperature and pressure at the final equilib-
rium state.

Equation 7.45 says that, for a system in contact with a heat and pressure 
reservoir, spontaneous changes will occur in the direction of decreasing 
G. At equilibrium, where any infinitesimal changes induced are reversible, the 
equality sign holds and

	 dG = 0 	 (7.46)

so there is a minimum in the Gibbs function. Hence,

7.5.2  Application to chemical reactions

This result (minimizing the Gibbs function) is significant for chemical 
reactions. In a typical reaction

	 A B C D+ → + 	

the reactants A and B are initially at room or ambient temperature. They react, 
perhaps giving off or absorbing heat, with the temperature rising or falling, 
and then the products of the reaction C and D return to room temperature. 
The pressure is kept at the pressure of the surroundings, usually atmospheric 
pressure as noted before. The reaction will proceed if ΔG for the process is 
negative. Consider two important biochemical reactions.

The oxidation of glucose is represented by the following reaction:

	 C H O 6O 6CO 6H O6 12 6 2 2 2+ → + 	

The values for the Gibbs function for all the chemicals are tabulated. At 25°C, 
the change in G for the reaction is −2870 kJ/mol, so the reaction will proceed 
in the direction indicated. However, thermodynamics does not give the rate at 

The condition for thermodynamic equilibrium in a system in thermal 
and mechanical contact with a heat and pressure reservoir is that the 
Gibbs function is a minimum.
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which the reaction proceeds, only its direction. In practice, an enzyme catalyst 
is required to accelerate this reaction.

Photosynthesis, the formation of carbohydrate, is represented by the following 
reaction:

	 CO H O CH O O2 2 2 2+ → + 	

ΔG for this reaction is + 478 kJ/mol. With ΔG > 0, this reaction will not proceed 
spontaneously; the radiant energy of sunlight is required to drive the reaction 
forward.

7.5.3  Gibbs function and entropy

It is instructive to take a closer look, in rather more general terms, at the underly-
ing reasons for the minimization of G for a closed system in thermal and mechan-
ical contact with the surroundings at T0 and P0. The second law requires that the 
entropy of the system and the surroundings can only increase or stay the same

	 ∆ ∆ ∆S S Suniverse = + ≥0 0 	

As in Equation 7.43, this implies

	
∆ ∆H T S− ≤0 0

	

because ΔU + Δ(PV) = ΔH and Δ(TS) = T0ΔS. Although the state functions S 
and H in this inequality refer to the system, it is important to remember that 
the inequality tells us about the net entropy change in the system and the sur-
roundings. Now, the interdependent entropy and enthalpy changes ΔH and ΔS 
of the system that occur in a process may be positive or negative, and the nec-
essary requirement for the process to proceed is that the inequality is satisfied 
so that the entropy of the universe increases. Clearly, this is so if ΔS is positive 
and ΔH is negative; such a process may then proceed of its own accord (i.e., 
spontaneously). Conversely, if ΔH is positive and ΔS is negative, the process 
cannot proceed. However, if ΔH and ΔS have the same sign, then whether or 
not the process proceeds depends on which of the two terms, ΔH or T0ΔS is 
dominant. There is competition between them, and a balance will be struck 
when T0ΔS = ΔH with ΔSuniverse = 0. This balance at equilibrium appears as a 
minimization of G, which contains both H and S.
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These ideas are in contrast with those from statics, where at equilibrium it is 
the simple potential energy that is minimized. In thermodynamics, one must 
allow for the additional complication of adding energy to the system in the 
form of heat rather than just by work. The potential function G accounts for 
the competing changes in H and S and automatically includes the entropy 
changes of both the system and the surroundings for a process in which the 
end points are at the ambient T0 and P0. Section 7.4 considered the less general 
case of a system at a fixed volume in thermal contact with a heat reservoir at T0. 
In that case, there is competition between ΔU and T0ΔS to give a minimum in 
F at equilibrium.

It is worth examining in more detail the case when the two terms ΔH 
and  T0ΔS have the same sign. Whether or not the process proceeds 
depends on which term is dominant in the inequality ΔG = ΔH − T0ΔS ≤ 0. 
Notice that,  at  high temperatures, the T0ΔS term is dominant, and at low 
temperatures, the  enthalpy term is dominant. Let the process be repre-
sented by

	 A B↔ 	

where the double arrow implies that the process between two states A and B 
can go either direction under suitable conditions. Suppose that the process 
A → B has ΔS > 0, which is favorable for the change A → B, but that ΔH > 0, 
which is unfavorable for a change in that direction. Of course, this latter con-
dition is favorable to the reverse process B → A. As an example of such a pro-
cess, consider ice melting into water, with A being ice and B being water. Ice 
requires latent heat in order for it to melt, so ΔH is positive. [This is physically 
reasonable: ΔH = ΔU + Δ(PV) ≈ ΔU for a solid–liquid transition. This approxi-
mation is valid because the Δ(PV) term is generally small compared with the 
ΔU term, due to the small volume change, and ΔU is positive because the 
potential energy of the molecules increases when they break free from their 
bound positions in the solid.] Now, ΔS is also positive, because ice is a more 
ordered state than water. At low temperatures, the ΔH term wins, so ΔG is 
positive and the process A → B does not occur. However, at high tempera-
tures, the T0ΔS term wins, so that ΔG < 0 and the process A → B goes ahead. 
This certainly is true for ice at one atmosphere remaining ice at temperature 
less than 0°C and melting into water at higher temperatures. The stable con-
dition of ice coexisting with water occurs when the ΔH term is exactly bal-
anced by the T0ΔS term at 0°C with ΔG = 0. This idea will be discussed again 
in the larger context of phase transitions in Chapter 10. See also the book by 
Peters (2010).
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7.5.4  Useful work

Section 7.4 showed that, in a process in which the initial and final tempera-
tures are equal to the temperature of the surroundings and where the heat 
transferred is between the system and the surroundings only, the maximum 
work that can be obtained from a system is equal to the decrease in F. Consider 
a gas in a cylinder expanding through a volume ΔV and by doing so per-
forming some external work W. This could be the lifting of a weight, as illus-
trated in Figure 7-6a or the turning of the shaft of an electrical generator for 
example. In performing this work, the gas also does useless work P0ΔV against 
the surrounding atmosphere at the pressure P0 and temperature T0. Another 
example of useless work occurs in an electrolytic cell where, in addition to the 
electrical work delivered at the rate I2R when a current I is passed through a 
resistance R, the cell also performs useless work because any gases produced 
in the electrolytic reaction have to push back the atmosphere. This is illustrated 
in Figure 7-6b.

There is an elegant way of subtracting off this useless work from the total work 
performed by a system that is allowed to expand between a pair of states, both 
at P0 and T0, and where any heat transferred is between the system and the 
surroundings only. The cell illustrated in Figure 7-6b is an example of such 
a process; however, the gas-weight system of Figure 7-6a must be excluded, 
because the end point pressures are not P0, even though the end point 
temperatures are T0.

Weight
–+

Weightless
piston

Gas
P.T.

T0P0

(a)

(b)

Weightless piston

R

I

Electrolytic cell

P0T0

Figure 7-6  Two illustrations of useful work. In each case, the system has to expand against 
the surroundings and, in doing so, has to perform an amount P0ΔV of useless work.
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Before proceeding further, consider again the requirement that the end points 
be at P0 and T0. Clearly, in a simple system, this means that there can be no 
change in volume, and so no volume work can be performed. For a change of 
volume to occur under these conditions, there must be some additional degree 
of freedom within the system, as would be allowed, for example, by an internal 
chemical reaction.

For a process beginning and ending at (P0,T0), assuming it to be reversible, 
Equation 7.31 gives W = −ΔF. Also,

	 W W P V F P Vuseful  = − = − −0 0∆ ∆ ∆ 	 (7.47)

or

	 W F P V F PVuseful = − + = − +∆ ∆ ∆( ) ( )0 	 (7.48)

because the end point pressures are both P0. As can be seen from the 
defining  Equations 7.21 and 7.37, G = F + PV, and it follows from Equation 
7.48 that

	 W G P Tuseful end points at= −∆ ( , )0 0 	 (7.49)

The decrease in the Gibbs function then gives the maximum amount of useful 
work for such a process. Notice again it is not required that T and P to be fixed 
at T0 and P0 throughout the process, but rather they need take these values 
only at the end points.

Because of its relation to useful work, G is often called Gibbs free energy. 
The concept of useful work arises again in Section 7.6, when we introduce a 
rather more general approach using the concept of availability.

7.5.5  F or G?

Sections 7.4 and 7.5 described carefully the properties of the two state func-
tions F and G and the circumstances in which each one is appropriate to 
use. In particular, for a system in thermal and mechanical contact with a 
heat and pressure reservoir, G minimizes at equilibrium. However, if the 
system is kept at constant volume and is in thermal contact with a reservoir, 
it is F  that  minimizes. Unfortunately, F and G frequently appear to be used 
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interchangeably in the literature in a somewhat loose manner, and so the 
validity of the procedure should be examined.

By definition F = U − TS and G = U + PV - TS. Therefore, the two functions are 
related by G = F + PV. In any change,

	 ∆ ∆ ∆G F PV= + ( ) 	

In some cases, the change Δ(PV) is small compared to ΔF = Δ(U) − Δ(TS). 
This  would occur, for example, in a process involving a metal, where the 
volume  change is usually small. In that case ΔG ≈ ΔF, and little error is 
incurred in using one function instead of the other. However, in a process 
involving a gas, the term Δ(PV) is important because of large volume changes 
ΔV. In general, one should be very careful to use the correct potential function 
appropriate to the circumstances.

7.6  AVAILABILITY FUNCTION A

The arguments used in the previous sections in deriving the conditions for 
equilibrium under different conditions can be generalized using the concept 
of availability.

From Section 7.5, the condition for equilibrium for a system in thermal and 
mechanical contact with a heat and pressure reservoir is that the Gibbs 
function for the system is a minimum. Further, minimizing G for the system 
automatically maximizes the entropy of the system and the surroundings. 
Section 7.4 showed that, for a system in thermal contact with a heat reservoir 
but kept at constant volume, the equilibrium condition was one of minimum 
F for the system. Again, minimizing F automatically maximizes the entropy of 
the system and the surroundings. These results both follow from the concept 
of availability.

As a starting point, consider a system at P, V, and T that can exchange heat 
Q with the surroundings, a heat and pressure reservoir at P0 and T0, in a pro-
cess on the way to equilibrium. In this process, the volume of the system may 
change by ΔV. This is shown in Figure 7-7. In the general case, there are no 
restrictions on the state variables of the system; these will be introduced later 
in the argument.
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The reasoning follows the now familiar pattern. Heat Q flows between the 
reservoir and the system, with an adiabatic wall around the outside so that no 
heat crosses this boundary. Hence,

	 ∆ ∆S S+ ≥ 0 0 	 (7.50)

by the principle of increasing entropy for the combined system and reser-
voir. But with ΔS0 = −Q/T0 for the reservoir, the entropy increasing principle 
becomes −Q/T0 + ΔS ≥ 0 or

	 Q T S− ≤0 0∆ 	 (7.51)

From the first law ΔU = Q − P0ΔV. Substituting for Q in Equation 7.51 gives

	 ∆ ∆ ∆U P V T S+ − ≤0 0 0 	 (7.52)

So far this follows the familiar pattern. However, now define the 
availability A as

Notice that A is a function of the state variables of both the system and the 
surroundings. With this definition, Equation 7.52 becomes

	 ∆A ≤ 0 	 (7.54)

Availability function A:

	 A U P V T S= + 0 0– 	 (7.53)

Adiabatic wall

Moveable diathermal wall

T0P0Reservoir

System

Q

PVT

Figure 7-7  A system in contact with a reservoir at T0 and P0. Such an arrangement tends to 
a state of minimum availability.
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This is an entirely general result:

Now, one may introduce the particular restrictions on P, V, and T. In the first 
special case of a system in thermal and mechanical contact with a heat and 
pressure reservoir, P = P0 and T = T0 at the start and end of the process (though 
not necessarily at the intermediate stages). Then,

	 ∆ ∆ ∆ ∆A U P V T S U PV TS G= + − = + + = ≤( ) ( )0 0 0 	 (7.55)

with G of the system becoming a minimum at equilibrium. This agrees with 
the result in Equation 7.45.

Now consider the second special case of a system kept at constant volume and 
in thermal contact with a heat reservoir

	 ∆ ∆ ∆ ∆ ∆A U P V T S U T S U TS F= + − = − = − = ≤( ) ( ) ( )0 0 0 0 	 (7.56)

This result follows because V is unchanged and T = T0 at the beginning and 
end of the process. This matches the earlier result in Equation 7.34.

In a similar way, the equilibrium conditions for a system held under different 
external conditions from the two cases considered here (which are the most 
important ones) may be readily obtained using the general result in Equation 
7.54 for availability. (See the book by Adkins (1984) for a complete list of all the 
possibilities.) Further, it is quite clear from the definition of A that these results 
follow from maximizing the entropy of both the system and the surroundings, 
whereas in minimizing G or F of the system alone, this point can be all too 
easily misunderstood.

You can see why the name “availability” is appropriate. The decrease in the 
availability is equal to the maximum amount of useful work that can be 
extracted from a system in a given set of surroundings. In other words, it gives 
the amount of energy available for useful work. The proof of this property is 
quite straightforward and similar to the discussion of G in Section 7.5. There 
you saw that, in a system performing work W, an amount of useless work P0ΔV 
was expended against the surroundings and was not available for useful work. 
In the example of Figure 7-6b of the electrolytic cell, this work could not be 

The availability can only decrease, becoming a minimum at 
equilibrium.
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used as useful work in either Joule heating in the resistor or in driving an 
external electric motor. The useful work is then

	 W W P Vuseful = − 0∆ 	 (7.57)

The first law, applied to the system, is

	 ∆ ∆U Q W Q W P V= − = +–( )useful  0 	 (7.58)

Substituting the value of Q given by Equation 7.51,

	 ∆ ∆ ∆U W P V T S+ + − ≤useful 0 0 0 	 (7.59)

or

	 W U P V T Suseful + + − ≤( )∆ ∆ ∆0 0 0 	 (7.60)

Hence,

	
W Auseful ≤ −∆

	 (7.61)

For a given change of state in the system in a given environment, ΔA is fixed 
(because ΔU, ΔV, ΔS, P0, and T0 are all fixed), and the maximum useful work 
that can be obtained will be when the equality sign in Equation 7.61 holds. 
Therefore,

	 ( )W Auseful maximum = −∆ 	 (7.62)

which proves the proposition.

Of course, useless work is also done against friction and other dissipative 
forces that have so far been ignored. If the work Wfriction done against friction is 
included, Equation 7.61 becomes

	 W W Afriction useful+ ≤ −∆ 	 (7.63)

The effect of the extra term on the left side of Equation 7.63 is to make 
the inequality in Equation 7.61 even stronger. Thus, the inequality Wuseful ≤ −ΔA 
is entirely general; it is valid even in the presence of dissipative forces.
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As an illustration of these rather general ideas (the fact that they are general 
is the power of the availability approach), consider once again the specific 
and  most important case of a system in thermal and mechanical contact 
with the surroundings at P0 and T0 so that, in any process ΔT = ΔP = 0 for the 
system. As usual, this follows because P = P0 and T = T0 at the end points, if not 
in between. Equation 7.61 becomes

	 W U P V T S U PV TS Guseful ≤ + − = − + − = −∆ ∆ ∆( ) ( )0 0 	

with

	 ( )W Guseful maximum = −∆ 	

This is the result obtained earlier as Equation 7.49. This should cause no 
surprise, because both results follow from the same underlying idea: the 
principle of increasing entropy.

7.7  THE THERMODYNAMIC SQUARE

This chapter contains a large number of equations, variables, and relation-
ships. Fortunately, there are patterns that make it easier to remember the 
most important relationships. This section introduces a way to organize 
them.

7.7.1  Thermodynamic identities

Section 5.5 presented the first thermodynamic identity

	 dU TdS PdV= − 	 (5.10)

In this chapter, similar equations were found for differentials of the other ther-
modynamic potentials

	 dH TdS VdP= + 	 (7.11)

	 dF P dV S dT= − − 	 (7.23)

	 dG VdP S dT= − 	 (7.38)
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These four equations (not just the first one) are collectively known as the four 
thermodynamic identities. A little examination reveals that they are cyclic 
permutations of one another, and this fact can be used to construct a visual 
aid called the thermodynamic square (Figure 7-8), which makes it easier to 
remember the relationships.

For example, suppose you want to remember the first thermodynamic iden-
tity, containing dU. The first step is to find U on the left side of the square. 
Then, U is adjacent to S and V, which in turn are connected by lines to P and 
T. This pattern means that the equation for dU contains the terms PdV and 
TdS. The  arrows pointing toward V and away from S indicate that the cor-
rect terms are -PdV and TdS. That is, an arrow pointing toward an adjacent 
potential indicates a minus sign and an arrow pointing away indicates a plus 
sign. Similarly, the equation for dH contains the terms +TdS and +VdP, and so 
on for the other two identities.

7.7.2  Maxwell relations

The four Maxwell relations, which contain P, V, T, and S, are also related in a 
regular way that allows them to be reconstructed using the same square. The 
four relations are
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(7.26)

V F T

S H P

U G

Figure 7-8  The thermodynamic square, which shows relationships between thermody-
namic potentials and state functions and yields the four thermodynamic identities.
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(7.41)

Notice that the quantities P, V, T, and S occupy the four corners of the square. 
To obtain any relation, start at one corner of the square. For example, start 
at the upper-right corner (T) and proceed counterclockwise in order T, V, S, 
which is read as the left side of Equation 7.5. Then, go to the corner not yet used 
(P) and proceed clockwise in order P, S, V, read as the right side of Equation 7.5. 
To determine whether or not to include a minus sign in the Maxwell relation, 
draw in the counterclockwise and clockwise paths ending in arrows, as shown 
in Figure 7-9. In this case, the arrows outside the square point in opposite 
directions, up and down, while those inside the square are in the same 
direction, both up. This difference signals you to include a minus sign, which 
yields the correct identity in Equation 7.5. Following the same steps, starting 
from each of the four corners, yields all four Maxwell relations. The plus signs 
in Equations 7.14 and 7.26 result from the fact that the arrows inside the square 
match those outside.

Remember that the thermodynamic square is just a memory device, not a proof 
of the thermodynamic identities or Maxwell’s relations. The proofs require a 
careful understanding of this chapter.

7.8  EXAMPLE USING A MAXWELL RELATION

Suppose you have a block of metal and compress it reversibly and 
isothermally,  at constant temperature T, from a pressure Pi to a pressure Pf, 
as  illustrated in Figure 7-10. According to the first law, heat will flow out of 
the block. How much?

V F T

S H P

U G

Figure 7-9  Illustration of paths taken around the square that lead to the four Maxwell 
relations.
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Start with the basic equation for heat flow in a reversible process

	 CQ TdSR = 	 (5.4)

Hence, the problem can be solved by finding dS in terms of known quantities 
and then integrating. As in the examples given in Sections 2.1.4 and 2.4, one 
may express S as a function of the state variables for which the changes are 
given, in this case T and P. That is, S = S(T, P). This is allowed, because process 
is reversible, and this is just a way of writing down the equation of state, which 
holds at each point in the process. Hence,

	
dS

S
P

dP
S
T

dT
T P

= ∂
∂





 + ∂

∂





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where the second term is zero, because the process is isothermal. The 
first partial derivative containing S can be changed into a more familiar 
expression involving P, V, and T by using a Maxwell relation, in this case 
Equation 7.41
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(7.41)

Hence,

	
CQ T

V
T

dP TV dP
P

R = − ∂
∂





 = − β

	

where β =  ( )1/ /V V T∂ ∂ is the thermal expansion coefficient from Equation 2.2. 
Integrating

Pi PfÆ
Ti = T Tf = T

Figure 7-10  Illustration of the isothermal compression of a block from initial state (Pi, T) 
to final state (Pf, T).
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where it is assumed that there is only a small change of volume in the 
compression and that the expansion coefficient β is constant. The minus sign 
indicates that heat flows out, as expected.

A good number of problems in thermodynamics can be solved using this 
approach.

PROBLEMS

	 7.1	 It is a result of statistical mechanics that the internal energy of an 
ideal gas is

	

U U S V Nk
N
V

e S Nk= ( ) = 



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, α B

/
/ B

2 3
2 3

	

	 where α is a constant and the other symbols have their usual 
meanings. Show that the equation of state PV = nRT follows from 
this equation.

	 7.2	 The Helmholtz function of one mole of a certain gas is

	
f

F
n

a
v

RT v b j T= = − − − +ln( ) ( )
	

	 where a and b are constants and j is a function of T only. Derive an 
expression for the pressure of the gas.

	 7.3	 The table gives the values of some thermodynamic properties of a 
substance at two different states, both at the same temperature.

		  What is the maximum amount of work that can be extracted from 1 kg 
of this substance in taking it from the initial state to the final state? 
Select the relevant data from the table. This substance, incidentally, is 
superheated steam.

Temp. (°C) u (kJ/kg) s (kJ/(K ⋅ kg)) P (N/m2) v (m3/kg)

Initial state 300 2727 6.364 4 × 106 0.0588

Final state 300 2816 8.538 0.05 × 106 5.29
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	 7.4	 The Gibbs function of one mole of a certain gas is given by

	
g RT P A= + + + +ln BP

CP DP2 3

 
2 3 	

	 where A, B, C, and D are constants. Find the equation of state of 
the gas.

	 7.5	 Derive the following equations:
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	 7.6	 Use the thermodynamic identity along with the equality of mixed 
second partial derivatives

	

∂
∂ ∂

= ∂
∂ ∂

2 2U
V S

U
S V 	

	 to prove the Maxwell relation in Equation 7.5. Use a similar 
procedure to prove the other three Maxwell relations.

	 7.7	 In the presence of a catalyst, one mole of nitric oxide (NO) decom-
poses into nitrogen and oxygen. The initial and final temperatures 
are 25°C and the process occurs at a pressure of one atmosphere. 
The entropy change is Δs = 76 J/(K · mol) and the enthalpy change is 
Δh = −8.20 × 105 J/mol. What is the change in the Gibbs free energy 
and what is the heat produced in the decomposition?

	 7.8	 The Haber process for synthesis of ammonia is historically important 
because it allowed for mass production of fertilizers for agricultural 
use as well as explosives. The synthesis follows the reaction

	 N 3H 2NH2 2 3+ → 	

		  (a) Use the data given below to find ΔG for this reaction and for one 
mole of ammonia, assuming standard conditions of atmospheric 
pressure and T = 298 K.
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		  (b) You should find that ΔG < 0, consistent with a spontaneous 
reaction. Why is a special process needed to make this work?

	 7.9	 Water boils at T = 100°C at one atmosphere pressure. In the process, 
the entropy increase is 109 J/K for each mole of water. Find the molar 
enthalpy increase.

	 7.10	 A gas cools from a temperature T to the temperature T0 of the 
surroundings. There is no change between the initial and final 
volumes, ΔV = 0, but the volume may vary during the process, and so 
the gas may perform work. This is indicated in Figure 7-11. Show that 
the maximum amount of work obtainable from the gas is

	
W C T T C T

T
T

V Vmax ln = − + 



( )0 0

0

	

	 Hints: (a) Consider the argument leading to Equation 7.28. 
(b) Hence show Wmax < −ΔU + T0ΔS. (c) Use Equation 5.11.

	 7.11	 One mole of an ideal gas expands at the constant temperature T0 
of  the  surroundings from a pressure P1 to a pressure P2. The atmo-
spheric pressure is P0. (a) By considering the total work done in a 
reversible expansion and subtracting the useless work, show that the 
maximum useful work done by the gas is

s (J/(K ⋅ mol)) h (kJ/mol)

N2 192 0

H2 131 0

NH3 193 −46.1

(Note that the tabulated values are all 
for one mole of reactant/product.)

T0

T

Area denotes work

P

V

Figure 7-11 
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		  (b) How is this work related to the change in the Gibbs function?
	 7.12	 The hydrogen fuel cell is a device used to power many vehicles (includ-

ing automobiles) and other machines. It is an important alternative 
energy source, because its emissions are carbon free. In a simple form 
of fuel cell, hydrogen gas is fed in at one electrode and oxygen at the 
other. Water is produced according to the reaction

	 2H O 2H O2 2 2+ → 	

	 The cell operates at the pressure and temperature (298 K) of the 
atmosphere. Under those conditions, the molar values of S  and 
H are as follows:

	 Assume that the cell operates reversibly. (a) Compute the change 
ΔG in the Gibbs function when one mole of H2O is produced. 
(b) Calculate the cell’s EMF, which will be equal to the terminal volt-
age. Hint: Be sure to use values for one mole of H2O being produced. 
The useful work done by the cell is then given by Equation 7.49.

	 7.13	 Electrolysis of water is accomplished by passing electrical current 
through water, with the result just the opposite as in the fuel cell of the 
preceding problem

	 2H O 2H O2 2 2→ + 	

		  (a) Explain why external work (in this case from the electrical energy 
supplied) must be done in order to make this reaction happen. 
(b) How much work must be done to produce one mole of hydrogen?

	 7.14	 Using the results of the previous two problems, discuss the advan-
tages and disadvantages of the hydrogen fuel cell as an energy source 
alternative to hydrocarbons.

	 7.15	 (a) For the fuel cell of Problem 7.12, find the work PΔV done in produc-
ing one mole of water, due to the gases changing into liquid. (b) Find 
ΔU for this process.

	 7.16	 Show that the equilibrium conditions listed below follow from 
Equation 7.54 for the availability:

s (J/(K ⋅ mol)) h (kJ/mol)

O2 205 0

H2 131 0

H2O 70 −286
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	 7.17	 Complete the following steps to prove Equation 7.36. (a) Explain why for 
a collection of N particles the internal energy is U N E= . (b) Use the 
rules of logarithms and the result of Chapter 6 Problem 6.4 to show that

	
U N E

N
Z

Z
N

Z= = − ∂
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= − ∂
∂β β

(ln )

	

		  (c) Recalling that β =1/ Bk T , show that the result of (b) can be rewritten

	
U Nk T

Z
T

= ∂
∂B

2 (ln )

	

		  (d) Use Equations 7.21 and 7.25 to show that

	
U F T

F
T

= − ∂
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		  (e) Use the result of (d) to show that
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		  (f) Combine the results of (c) and (e) to show that F Nk T Z= − B ln .
	 7.18	 For the paramagnetic material considered in Section 7.4.3, graph the 

entropy as a function of temperature for a range of temperatures from 
zero to 5ε/kB. Use the graph to assess the argument in the text regard-
ing low- and high-temperature behavior.
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System Equilibrium condition

Totally isolated S a maximum

Thermally isolated, held at constant P H a minimum

Thermally isolated, held at constant V U a minimum
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Chapter 8: General Thermodynamic 
Relations

In the first seven chapters of this book, many of the foundations of thermody-
namics and statistical physics have been put in place. With these foundations, 
it is possible to obtain some powerful general results. These results all follow 
very simply from the basic equations, but it is important to keep the big picture 
in mind and not get lost in the derivations. To that end, applications of each of 
the derived results will follow those results.

8.1  DIFFERENCE IN HEAT CAPACITIES, CP – CV

It was shown in Section 3.5.2 that for an ideal gas

	 C C nRP V= + 	 (3.16)

This result can be generalized for any system with the state variables, P, 
V, and T. The starting point comes from either of the two basic relations for 
the principal heat capacities
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The form of Equation 7.9 suggests writing S = S(T, V), so that
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In order to obtain CP , divide both sides of Equation 8.1 by dT at constant pres-
sure and multiply by T. This gives CP on the left side and CV on the right side
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(8.2)

or
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(8.3)

The aim is to produce a relation between CP and CV in terms of quantities that 
can be measured. In this case, the appropriate quantities are the thermal 
expansion coefficient β and bulk modulus B, where
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and

	
B V

P
V T

= − ∂
∂





 = 1

κ 	
(2.3)

The second partial derivative (∂V/∂T) in the second term on the right of 
Equation 8.3 is therefore equal to βV. The first partial derivative ∂S/∂V in that 
term is not recognizable, but it can be made so by applying a Maxwell relation. 
The appropriate one is
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Hence, Equation 8.3 becomes
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(8.4)

The first partial derivative in Equation 8.4 has P, V, and T in the wrong order to 
use K or β directly, but this can be repaired using the cyclical rule of Appendix B

More formally, one should write dS S T dT S P dPP T= ∂ ∂ + ∂ ∂( / ) ( / )  and 
dV = ( ) ( )∂ ∂ + ∂ ∂V T dT V P dPP T/ / , and then compare coefficients of dT.
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Hence, Equation 8.4 becomes
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Now the results in Equations 2.2 and 2.3 can be substituted to find

	
C C T BVP V= +  β2

	
(8.6)

which is the final result. As a check, note that the units for the last term are

	 (K)(K ) (N/m )(m ) N m/K J/K-1 2 2 3 = ⋅ = 	

which matches the units for heat capacity in the other two terms.

Equation 8.6 is a surprising result, because it relates apparently unconnected 
parameters: heat capacity, thermal expansion coefficient, and bulk modulus. 
It is a useful relation because experiments usually measure CP while theory 
gives CV , and so the two can be compared. Also, because the bulk modulus B 
is positive for all known substances, this means that CP > CV in general. It is left 
to the reader to show that Equation 8.6 reduces to Equation 3.16 for an ideal gas 
(Problem 8.1).

8.2  EVALUATION OF (∂CV/∂V)T AND (∂CP/∂P)T

For an ideal gas, internal energy is a function of temperature only: U = U(T). 
Then,
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is likewise a function of temperature only. In fact, for an ideal monatomic gas, 
U = 3NAkBT/2 per mole, and so CV = 3NAkB/2 = 3R/2 is constant. The ideal gas is 
typical of many systems, in that theory often explains how the internal energy, 
and hence CV , varies with T. However, one might also wonder how CV varies 
with V; in other words, what is (∂CV/∂V)T?

Before calculating this quantity, we should explain what appears to be a con-
tradiction in terms. If CV is the heat capacity measured at constant volume, 
what does it mean to ask for its variation with volume? The answer is that a 
measurement of CV involves holding the volume constant and measuring the 
limiting value of the heat put in divided by the resulting temperature rise as 
δT → 0. If then a different constant value of V is chosen and the measurement 
for CV is repeated, the result can be a different value of CV appropriate to this 
new value of V. It is in this sense that CV could depend on V, and so it is sensible 
to compute the value of (∂CV/∂V)T.

From before
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so
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(8.7)

because the order of differentiation with respect to V and T may be inter-
changed in the second-order partial derivative. Applying the Maxwell relation
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(7.26)

to Equation 8.7,
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or
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(8.8)

If one knows the equation of state, Equation 8.8 may be integrated to tell one 
how CV varies with V. It is left to the problems (Problem 8.5) to show that CV for 
a van der Waals gas is a function of T only.

It is also left as a problem (Problem 8.4) to derive the analogous result
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(8.9)

8.3  ENERGY EQUATION

Internal energy U = U(T) for the special case of an ideal gas. However, in 
general U will be a function of volume too, so it should be possible to find an 
expression for (∂U/∂V)T in terms of P, V, and T.

The basic thermodynamic identity is

	 dU TdS PdV= − 	 (7.1)

so
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(8.10)

Applying the Maxwell relation
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to Equation 8.10 gives
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Equation 8.11 is a powerful result known as the energy equation. If the equa-
tion of state is known for the system, then the energy equation gives useful 
information about the internal energy.

As an example of its application, consider an ideal gas with the equation of 
state PV = nRT. Then,
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This result says that U is not an explicit function of V but only of T: U = U(T).

It is straightforward to show why U cannot be an explicit function of P. 
Suppose

	 U f T P= ( , ) 	 (8.12)

where f is a function. Then, using the equation of state, one could substitute 
P = nRT/V in Equation 8.12 to obtain a new function, g, where

	 U g T V= ( , ) 	 (8.13)

which, as was just shown from the energy equation, is untrue. Therefore, 
Equation 8.12 is false, and U = U(T) only for an ideal gas—the result stated in 
Section 3.5.

There is a second energy equation that is used less frequently than the first 
(Equation 8.11). It is left as a problem (Problem 8.6) to show that
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(8.14)

8.4  RATIO OF HEAT CAPACITIES, CP /CV

Just as there is a useful relation for the difference in the principal heat capaci-
ties, so there is another useful expression for their ratio. The result is that

It is not recommended that students memorize the energy equations. It is 
sufficient to remember that they exist and the form of the left-hand sides.
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where as in Equation 2.3 κT is the usual isothermal compressibility and κS is 
the adiabatic compressibility
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Using Equation 7.9 and 7.17,
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In this case, S cannot be eliminated from Equation 8.15 by using the Maxwell 
relations. Indeed, it would be unwise to do so, because S is needed outside the 
partial derivative to give κS. Instead, recast the order in the partial derivatives 
in Equation 8.15 using the cyclical rule (Appendix B)
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and similarly,
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Substituting Equations 8.16 and 8.17 into Equation 8.15,

	

C
C

S P T
S V T

S P V ST S

T S

T TP

V

P
V V

= ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= ∂ ∂ ∂ ∂
∂

( ) ( )
( ) ( )

( ) ( )
(

/ /
/ /

/ /
/∂∂ ∂ ∂

= ∂ ∂
∂ ∂

T T P) ( )

( )
( )

S S

T

S

V P
V P

/

/
/ 	



206    Chapter 8: General Thermodynamic Relations

Using the definitions of the two forms of compressibility from above,
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(8.18)

At first sight, this may again be a surprising result, relating elasticity param-
eters to heat capacities. However, it should be realized that the heat capacities 
are determined under definite conditions of P and V, while the two versions of 
compressibility are determined under conditions of definite T and S. Hence, it 
is not really so surprising that results such as Equations 8.18 and 8.6 exist.

As an application of Equation 8.18, consider a weakly magnetic system, where 
the infinitesimal work term is given by B0 dℳ as in Equation 2.13, and where 
magnetic work is the only work. (That is, the mechanical work −PdV = 0.) 
Then, V has to be replaced by ℳ and P by −B0. The corresponding relation to 
Equation 8.18 is
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(8.19)

where the isothermal and adiabatic differential susceptibilities are
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(8.20)

Thus, by measuring the ratio of the magnetic susceptibilities, which are 
relatively easy to measure, the ratio of the magnetic specific heats may be 
determined.

In a paramagnetic salt, the magnetism is due to unpaired effective electron 
spins. Because of its use as a thermometer below 1 K, the best known para-
magnetic salt is cerium magnesium nitrate, Ce2Mg3(NO3)12 ⋅ 24H2O, where the 
single unpaired spin is on the cerium ion. One may regard the cerium spins 
as the system while the magnesium nitrate lattice can be regarded as the sur-
roundings, as shown in Figure 8-1a. Susceptibilities may be measured using 
the AC method shown in Figure 8-1b.

The spins are aligned with a steady magnetic field and, superimposed on this, 
is a small AC field that flips the spins parallel and antiparallel to the steady 
field. The current measured by the detector is proportional to the susceptibility 
χ of the sample.
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The spins can flip over in a characteristic time τ, giving up their excess magnetic 
energy to the lattice. For cerium magnesium nitrate, this time is ∼0.01 s at T = 2 K. 
At low measuring frequencies, with a period much longer than τ, the spins have 
plenty of time to exchange their energy of magnetization with the lattice, and so 
χT can be measured. Conversely, χS can be measured at high frequencies. From 
these measurements of χT and χS, the ratio C CB0 / ℳ  is determined.

8.5 � REVISITING THE ENTROPY 
OF AN IDEAL GAS

Recall that the entropy of an ideal gas was found first in Equation 5.11 and then 
again using statistical methods in Section 6.2.5. It is useful to take another look 
at the problem, following the methods of this chapter. Entropy is a function of 
temperature and volume, or S = S(T, V), so
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(8.21)

Using Equation 7.9 and the Maxwell relation Equation 7.26,
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This technique is known as the relaxation method of measuring heat 
capacities and is important in low temperature physics.

Spins

Lattice

(a) (b)

Current
detector

Steady B0 from a large magnet
superimposed on this steady B0
is a small oscillating field provided
by the alternating voltage Eocos(ωt)

Paramagnetic salt

Mutual
inductance

coil

Eocos(ωt) ∼

Figure 8-1  Relaxation method of measuring the ratio of magnetic heat capacities.
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Now consider one mole of the gas with the molar heat capacity at a constant 
volume cv . Then,

	 Pv RT= 	

and
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Hence, Equation 8.22 becomes
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Integrating

	
s c T R v sv= + +ln ln 0 	

(5.11)

where s0 is a constant. Note that this matches not only Equation 5.11, but also the 
identical result obtained statistically in Section 6.2.5. For n moles, this becomes

	
s n c T R v sv= + +( )ln ln 0

	
(8.23)

The same procedure is used to find the entropy as a function of temperature 
and pressure. Now, S = S(T, P), and so
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By Equation 7.17, CP = T S T P( )∂ ∂/ . Employing this result along with the Maxwell 
relation in Equation 7.41, Equation 8.24 becomes
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For one mole, the equation of state gives ∂ ∂( )V T
P

/  = R/P, so this becomes
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(8.26)
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Integrating Equation 8.26,

	
s c T R P sP= − +ln ln 0 	

(8.27)

for one mole or

	
s n c T R P sP= − +( )ln ln 0

	
(8.28)

for n moles, where s0 is constant.

8.6  JOULE AND JOULE–KELVIN COEFFICIENTS

The remainder of this chapter is devoted to study of the Joule coefficient and 
Joule–Kelvin coefficients. After presenting some basic facts about these con-
cepts, we conclude this chapter by showing how the Joule–Kelvin coefficient is 
used in refrigeration.

8.6.1  Joule coefficient for free expansion

Recall from Section 2.2.2 the case of free expansion of a gas, as shown in 
Figure 2-7. It was shown in Section 3.5.1 that no work is done, and if no heat 
enters the system through the adiabatic walls, then the gas’s internal energy 
is unchanged in the expansion. For an ideal gas, this means that there is no 
temperature change. Free expansion is an irreversible process. This is seen 
because the gas does not pass through a series of equilibrium states, and 
because the entropy of the universe increases in the process (Equation 5.6). 
However, the end points are equilibrium states, and for this reason ther-
modynamics can be applied to this process to determine the temperature 
change.

With no change in internal energy, Ui = Uf, where as usual the subscripts i 
and f refer to the initial and final equilibrium points. The temperatures Ti and 
Tf are uniquely specified by the pairs of variables (Ui, Vi) and (Uf, Vf) and so 
ΔT = Tf − Ti is also uniquely specified. Hence, one may imagine a reversible 
expansion from the state i to the state f and calculate ΔT for the expansion. 
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The ΔT so obtained will be the same as the actual ΔT occurring in the irrevers-
ible expansion. The most convenient reversible process connecting the end 
points is a quasistatic expansion occurring at constant U.

As discussed in Section 2.4, it is now reasonable to write T = T(V, U), so
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where the second term on the right is zero because U is constant in this 
process. Integrating,
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The partial derivative (∂T/∂V)U is called the Joule coefficient μJ. In order to 
integrate Equation 8.30, it is necessary to find an expression for μJ in terms of 
P, V, and T.

The first thing to recognize about μJ is that it is difficult to handle as it stands 
because of the constant U outside the partial derivative. This is in contrast to 
the usual (simpler) case with U inside a partial derivative, as in CV = (∂U/∂T)V 
and in the energy equation, for example. Thus, it is desirable to bring U inside 
using the cyclical rule (Appendix B)
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This can be used to write the Joule coefficient μJ = (∂T/∂V)U as
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because C U TV V
= ∂ ∂( )/ . The partial derivative in Equation 8.32 is given by the 

energy equation
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Therefore, the Joule coefficient becomes
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The Joule coefficient may be calculated using Equation 8.33 and the equation 
of state, as shown in the following examples.

8.6.2  Joule coefficient for an ideal gas

The equation of state for one mole of an ideal gas is Pv = RT, so
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Substituting this into Equation 8.33 gives μJ = 0. That is as expected, because 
there is no temperature change in the free expansion of an ideal gas.

8.6.3  Joule coefficient for a real gas

A useful modification to Pv = RT for one mole of a real gas is the so called 
virial expansion:
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(8.34)

where the Bn are the virial coefficients, which are temperature dependent and 
get progressively smaller the higher the order of the term. Therefore, as a first 
approximation one may keep only the B2 term and neglect the smaller, higher-
order terms. With that approximation, the Joule coefficient becomes (see 
Problem 8.2)
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(8.35)

The variation of B2 with temperature is known. For argon, for example, where 
dB2/dT = 2.5 × 10‒7 m3/(mol ⋅ K), μJ can be calculated from Equation 7.35 to be 
μJ = −25 K mol/m3.

Suppose now that the volume of one mole of argon is doubled at STP. 
Equation  8.30 predicts that the expansion will be accompanied by a drop 
in temperature (because the Joule coefficient is negative.) To calculate the 
expected temperature change, recall that one mole of gas at STP occupies 
22.4 L = 0.0224 m3. In order to gain an order of magnitude answer, assume that 
μJ is constant for the integration in Equation 8.30. Then,

	

∆ ∆T v≈

≈ − × = −

µJ

3 325 K m 224 m 6 K( / ) ( . ) .0 0 0 	

which is a very small effect. Indeed, as noted in Section 3.5.1, Joule was unable 
to measure this effect for air. This is consistent with the idea that air behaves 
as a nearly ideal gas under normal conditions. The free expansion of any 
gas always results in cooling. The physical reason for this was discussed in 
Section 3.5.1.

8.6.4 � Joule–Kelvin coefficient for the throttling 
process

We conclude this chapter with a discussion of the important Joule–Kelvin 
effect or throttling process. This is an important effect, because it is 
widely used in refrigeration and in the liquefaction of gases. The process is 
illustrated in Figure 3-5. It was shown in Section 3.6 that the process takes 
place with no change in enthalpy (Hi = Hf). Before describing the thermody-
namics of this irreversible process, it is useful to describe the effect in more 
detail.

The most convenient way to represent the effect is on a temperature–pressure 
plot, as in Figure 8-2. Suppose that the initial equilibrium state before throt-
tling is the point i at (Ti, Pi). With the gas in this initial state, the gas can be 
throttled to the lower pressure Pf1, where it reaches final temperature Tf1  so that 
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the gas ends up in the final equilibrium state ( , )T Pf f1 1 . This state will have the 
same enthalpy as i. If instead the gas were throttled from the same initial state 
i to a lower final pressure Pf2 , it would then be in the final equilibrium state 
( , )T Pf f2 2 , again with the same enthalpy as i.

By repeating this experiment many times, one could obtain a series of points 
representing the different final equilibrium points, all starting from the 
same initial equilibrium point and all with the same enthalpy as i. The curve 
joining them is called an isenthalp, as shown in Figure 8-2, because it is a line 
of constant enthalpy. Remember that an isenthalp is not a curve represent-
ing one given throttling process between the equilibrium points at the ends 
of the isenthalp; instead, it is the locus of the end points of different throttling 
processes, all starting at the same initial state.

If now a second initial point ′ ′( )T Pi i,  is chosen, a second isenthalp may be 
drawn. This is shown as the lower curve in Figure 8-2. In a similar way, one can 
draw a whole series of experimentally determined isenthalps, and the results 
would appear as in Figure 8-3 for a typical gas. The maxima of the different 
isenthalps lie on the inversion curve. Depending on where the initial and final 
points are chosen, both heating and cooling effects can be produced. This is 
in contrast to the free expansion, where there is always cooling. The inversion 
curve separates the region of heating from the region of cooling. The greatest 
cooling effect, for a given pressure drop and starting temperature, will occur 
when the initial state is on the inversion curve. The temperature coordinate 
of a point on the inversion curve is called the inversion temperature Tin. For 
there to be a cooling effect, the initial temperature must be chosen to be less 
than the maximum inversion temperature Tin

max . Notice on Figure 8-3 that Tin
max  

(Pf2, Tf2)

H

H ′

(Pf1, Tf1) (Pi, Ti)

(P ′i , T ′i)

P

T

i
Isenthalps

Figure 8-2  Isenthalps of a throttling process.
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is at the intersection of the inversion curve and the temperature axis, because 
the final throttling pressure cannot be less than zero. The maximum inversion 
temperatures for some common gases are given in Table 8-1.

For a given type of gas, the theoretical maximum inversion temperature can 
be calculated theoretically. For example, Problem 8.18 asks for a demonstra-
tion of the maximum inversion temperature for a van der Waals gas.

The point of the throttling process is to reduce temperature. It is possible to find 
a general expression for ΔT for a throttling process in terms of P, V, and T. As for 
the case of free expansion, the end points at (Pi, Hi) and (Pf, Hf) are equilibrium 
states, and therefore the temperature change calculated for an imaginary 
reversible process between them is the same as the temperature change in 
the actual irreversible throttling process. The most convenient reversible 
process to choose is a quasistatic expansion from the initial pressure Pi to the 

Maximum inversion
temperature

T in
max

H1

H2

H3

H4

Cooling

Heating

Inversion curve

T

P

Figure 8-3  Inversion curve for a throttling process.

Table 8-1  Maximum Inversion Temperatures for 
Some Common Gases

Gas Maximum inversion temperature (k) Tin
max

Argon 723

Nitrogen 621

Hydrogen 205

Helium 51
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final pressure Pf taking place at constant enthalpy. Thus, the temperature is 
T = T(P, H), so that
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(8.36)

where the second term on the right vanishes for a constant H process. 
Integrating,
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(8.37)

The partial derivative (∂T/∂P)H is defined to be the Joule–Kelvin coefficient μJK.

In order to perform the integration in Equation 8.37, it is necessary to express μJK 
in terms of P, V, and T. The difficulty with
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is the constant H outside the partial derivative. It can be brought inside using 
the cyclical rule and then combined with dT using CP = (∂H/∂T)P . Applying the 
cyclical rule,

	

∂
∂







∂
∂







∂
∂





 = −T

P
H
T

P
HH P T

1
	

or

	

∂
∂





 = − ∂

∂






∂
∂







T
P

T
H

H
PH P T 	

(8.39)

The first factor on the right of Equation 8.39 is indeed 1/CP , while the second 
factor (∂H/∂P)T  is the enthalpy counterpart of the energy equation for U. To 
solve for this factor, begin with the thermodynamic identity

	 dH TdS VdP= + 	 (7.11)
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Taking the partial derivative with respect to P at constant temperature,
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(8.40)

This can be simplified using the Maxwell relation
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Substituting Equation 7.41 into 8.40,
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Hence, Equation 8.39 becomes

	

Joule Kelvin coefficient:
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(8.42)

This is the desired result for the Joule–Kelvin coefficient. Now, μJK can be cal-
culated from the equation of state. Notice that μJK can be positive or negative 
(or zero), depending on the relative values of the two terms inside the brackets. 
Finally, the temperature change in the throttling process may be determined 
by substituting the value of μJK given by Equation 8.42 into 8.37, analogous 
to the process used previously to find ΔT for free expansion, using the Joule 
coefficient.

It is easily shown that μJK = 0 for an ideal gas (Problem 8.16), and so there is no 
temperature change when an ideal gas undergoes a throttling process. For a 
real gas, μJK is best calculated from Equation 8.42 by writing the equation of 
state in a virial form, such as Equation 8.34. All the virial coefficients B i and 
their temperature coefficients are tabulated in the reference handbooks such 
as Kaye and Laby (1995).

The throttling process is of enormous importance, especially in the liquefac-
tion of gases. Gases might also be cooled by allowing them to expand adiabati-
cally in an engine and indeed, it can be shown (see Problem 8.19) that a simple 
adiabatic expansion produces a bigger temperature drop for a given pressure 
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decrease than a throttling process. Although adiabatic expansion is the more 
efficient method of cooling, it suffers from the severe disadvantage that mov-
ing parts are involved in the expansion engine, and they can seize up at the 
lowest temperatures, as impurities in the gas freeze out. On the other hand, 
the throttling process has no moving parts. That is why throttling is always 
used in the final stages in the liquefaction of nitrogen or helium. The next sec-
tion explains how the throttling process is used in the classic Linde method of 
liquefying helium.

8.6.5  Linde liquefaction process

A schematic representation of the Linde liquefier is given in Figure 8-4. 
The most difficult gas to liquefy is helium, which has the lowest boiling point at 
atmospheric pressure, a mere 4.2 K. This discussion involves using the Linde 
liquefier for helium, but of course it can be used for other gases.

In order for there to be any cooling using the throttling process, the helium 
gas has first to be cooled below the inversion temperature of 51 K by passing it 
through a cooler, which is typically a coiled pipe immersed in a bath of liquid 
hydrogen at 20 K. The gas then enters the countercurrent heat exchanger at 20 K 
at high pressure, where it is throttled through a valve. There it undergoes cool-
ing, but not enough to immediately cause liquefaction. The cooled gas passes 
out through the heat exchanger and, in doing so, cools the incoming gas below 

Another common application of throttling is in cryogenic surgery. 
Typically, a metal tip is made extremely cold by allowing a gas such as 
N2O or CO2 to throttle through a small opening in the tip. For example, a 
torn retina can be repaired in this manner, as experienced by this author.

Gas supply

Compressor

T > 20 K
20 K

20 K

Cooler
(liquid H2 at 20 K)

Heat
exchanger

�rottling
valve 4.2 K

Liquid helium at 4.2 K
and 1 atmosphere

Figure 8-4  Schematic representation of a Linde liquefier.
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20 K. This gas in its turn expands and cools the next amount of incoming gas 
even more. Eventually, the temperature on the inlet side of the throttling valve 
is low enough for liquefaction to occur, and the liquid helium collects at the bot-
tom of the heat exchanger container at 4.2 K and at a pressure of 1 atmosphere.

The compressor drives the helium gas around the circuit and provides the nec-
essary high pressure at the inlet side of the throttling valve. After compres-
sion and the consequent heating, the gas is cooled back to 20 K again by the 
liquid hydrogen cooler so that the helium always enters the heat exchanger at 
this temperature. It must be understood that the liquefier does not work on the 
principle that a given mass of gas completes several circuits suffering succes-
sive and additive temperature drops until it eventually liquefies.

PROBLEMS

	 8.1	 Show that Equation 8.6 reduces to Equation 3.16 for the case of an 
ideal gas.

	 8.2	 Show that using the approximation in Equation 8.34 with no higher 
terms than B2 leads to the Joule coefficient in Equation 8.35.

	 8.3	 Calculate the Joule coefficient for (a) a monatomic gas with 
dB2/dT = 3.6 × 10−7  m3/(mol ⋅ K) and (b) a diatomic gas with 
dB2/dT = 2.9 × 10−7 m3/(mol ⋅ K). In both cases, assume a pressure of 
101.5 kPa at temperature 0°C.

	 8.4	P rove the relation given by Equation 8.9
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	 8.5	 Show that CV for a van der Waals gas is a function of temperature only. 
Hint: Recall that the van der Waals equation of state is

	
P
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(3.18)

		  where a and b are constants and υ = V/n is the molar volume.
	 8.6	D erive the second energy equation
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	 8.7	 Consider n moles of a van der Waals gas. Show that (∂U/∂V)T = n2a/V2. 
Hence show that the internal energy is
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		  where U0 is a constant. Hint: Express U = U(T, V).
	 8.8	A s in the previous problem, consider n moles of a van der Waals gas. 

(a) Show that

	

S
C
T

dT nR V nb SV

T

= + − +∫
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		  where S0 is a constant. Hint: Use dS = 1/T(dU + PdV). (b) Show that the 
equation for a reversible adiabatic process is

	 T V nb nR CV( ) /− = a constant 	

		  if CV is assumed to be independent of T.
	 8.9	 Show that the difference between the isothermal and the adiabatic 

compressibility is

	
κ κ β

T S
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T
V
C
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2

	

	 8.10	 For each of the following processes, state whether the process is 
reversible or irreversible, and state which of the quantities S, H, U, F, 
and G are unchanged: (a) an isothermal quasistatic expansion of an 
ideal gas in a cylinder fitted with a frictionless piston; (b) as (a), but for 
a nonideal gas; (c) a quasistatic adiabatic expansion of a gas in a cyl-
inder fitted with a frictionless piston; (d) an adiabatic expansion of an 
ideal gas into a vacuum (a free expansion); and (e) a throttling process 
of a gas through a porous plug (the Joule–Kelvin effect).

	 8.11	 The Carnot cycle takes a particularly simple rectangular form on an 
ST plot (see Figure 5-11). An SH plot is also useful in engineering. Show 
that, for an ideal gas as the working substance, a Carnot cycle is again 
rectangular in this representation. Hint: First derive the general ther-
modynamic relations
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	 8.12	D erive the so-called TdS equations
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	 8.13	A  block of metal of volume V is subjected to an isothermal reversible 
increase in pressure from P1 to P2 at the temperature T. (a) Show that the 
heat given out by the metal is TVβ(P2 − P1). (b) Show that the work done 
on the metal is V P P B( )2

2
1
2 2− / . (c) By using the first law, calculate the 

change in U. (d) Obtain the same result as in (c) by writing U = U(T, P) so

	
dU

U
T

dT
U
P

dP
P T

= ∂
∂





 + ∂

∂






	

		Y  ou may assume that β, B, and V are approximately constant during 
the compression.

	 8.14	A  block of metal is subjected to an adiabatic and reversible increase of 
pressure from P1 to P2. Show that the initial and final temperatures T1 
and T2 are related as
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		Y  ou may assume that the volume of the block stays approximately 
constant during the compression.

	 8.15	A ssuming that helium obeys the van der Waals equation of state, deter-
mine the change in temperature when one kilomole of helium gas, ini-
tially at 20°C and with a volume of 0.12 m3, undergoes a free expansion 
to a final pressure of one atmosphere. You should first show that
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		  Use the following constants: a = 3.44 × 103 J m3/(kmol)2; b = 
0.0234 m3/kmol; cV/R = 1.506. Hint: You may approximate. First show 
that P2 ≫ P1. Then, you may take V2 ≫ V1.
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	 8.16	 Show that the Joule–Kelvin coefficient is zero for an ideal gas.
	 8.17	O ne kilomole of an ideal gas undergoes a throttling process from 

P1 = 4.0 atm to P2 = 1.0 atm. The initial temperature of the gas is 50°C. 
(a) What is the temperature change? (b) How much work must be done 
on the gas to take it reversibly between the initial and final states? (c) 
What is the entropy change of the gas? Hint: You should calculate the 
entropy change in two ways: (i) imagine a reversible process in which 
the gas is taken isothermally between the initial and final states and 
(ii) apply the general approach of writing S = S(T, H) and then imag-
ining a reversible process in which the pressure is changed at con-
stant H. You will need to show that (∂S/∂P)H = −V/T in general, from 
dH = TdS + VdP, and this reduces to −nR/P for an ideal gas.

	 8.18	 Show that the temperature and volume of the points (Tin, Vin) on the 
inversion curve for a van der Waals gas undergoing a Joule–Kelvin 
expansion are related as

	 T a V nb RbVin in in= − −2 2 2 1( ) ( ) 	

		A  ssuming that, at the maximum inversion temperature, Vin ≫ nb, 
show that T a Rbin /max ≈ 2 .

	 8.19	 Equation 8.42 gives the Joule–Kelvin coefficient

	

∂
∂





 = ∂

∂




 −











T
P C

T
V
T

V
H P P

1

	

		  so that the cooling in a throttling process with a pressure change from 
P1 to P2 is
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		  In a similar way, show that the cooling in an adiabatic reversible 
expansion from a pressure Pt to P2 is
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		  where
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		H  ence show that, for a given pressure change, the adiabatic expansion 
produces more cooling than a throttling process. Hint: Consider the 
difference in the integrands (∂T/∂P)S − (∂T/∂P)H and show that this is 
positive.

	 8.20	A  sample of nitrogen is initially at P = 10 bar and T = 100 K, where it 
has enthalpy −72.0 kJ/kg. It is then throttled to P = 1.0 bar and temper-
ature T = 77.3 K, where it is in a mixed gas/liquid phase. At that point, 
the enthalpy of the gas phase is + 88.0 kJ/kg, and the enthalpy of the 
liquid is −126.4 kJ/kg. What fraction of the nitrogen becomes liquid 
after throttling?

REFERENCE
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Chapter 9: Magnetic Systems

So far in this book, attention has been focused on systems in which the state 
variables are P, V, and T, which are related by an equation of state so that only 
two of them are independent. This chapter concerns magnetic systems, which 
are described by different sets of state variables. In addition to highlighting the 
practical importance of magnetic systems, this presentation serves to illus-
trate the wide applicability of the methods of thermodynamics. In Chapter 13, 
other systems that differ in nature from the familiar fluid PVT systems will be 
considered.

9.1 � THERMODYNAMICS OF 
MAGNETIC MATERIALS

Unfortunately, the study of electromagnetism is sometimes confused by the 
use of different systems of units and differing definitions and nomenclature for 
important quantities. This section begins with a brief review of some fundamen-
tals of electromagnetism. As in the rest of this book, the SI system of units will 
be used here consistently. The textbook by Griffiths (1999) is recommended as 
an excellent resource that has become a standard in undergraduate physics 
for the study of electromagnetism.

9.1.1  Some fundamentals of electromagnetism

Electromagnetism is a reciprocal effect, in that magnetic fields are created 
by subatomic magnetic moments or by moving electric charges, and in turn 
magnetic moments and moving charges experience forces when placed in a 
magnetic field. An electric charge Z traveling with velocity v in a magnetic field 
B experiences a force given by the vector cross product F = Zv × B, a relation 
often called the Lorentz force. This equation deserves elaboration on two small 
points. First, the symbol Z is used for electric charge here (as introduced in 
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Section 2.3.3), rather than q or Q as is typical in the study of electromagnetism, 
so that it will not be confused with heat. Second, the full Lorentz force includes 
the influence of electric fields E and is thus F = ZE + Zv × B. However, because 
this chapter is concerned only with magnetism and not electric fields, the first 
term is omitted for simplicity.

A magnetic material will have a net magnetization M, which is the magnetic 
moment per unit volume, with SI units A/m. It is related to the magnetic field 
B by the equation

	 B H M= +µ0( ) 	 (9.1)

where H is sometimes called the auxiliary field and also has units A/m. H is a 
convenient quantity in electrodynamics, because Ampere’s law can be written 
in differential form as

	 ∇∇ × =H Jf 	

or in integral form as

	
H ⋅ =∫ d I�� f

	

where the subscripts f refer to the free currents that generate the magnetic 
field. Thus, If is the free current and Jf is the free current density.

Because the Lorentz force law and Maxwell’s equations involve vector 
cross and dot products, the study of electromagnetism is highly dependent 
on vector calculus. However, for the thermodynamic relations that will 
be developed here, it will be sufficient (and much easier) to consider the 
scalar  versions of equations, such as writing Equation 9.1: B = μ0(H + M). 
This is a valid representation for linear materials, where the three vectors 
in Equation 9.1 all have the same direction. Therefore, only the scalar ver-
sions of this equation and those that follow from it will appear in the next 
sections.

9.1.2  Magnetic materials and susceptibility

When studying magnetic materials, it is useful to think of the magnetic field 
B as composed of two parts: an amount B0 = μ0H that would be present in free 
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space in the absence of the material, and the contribution μ0M from the mate-
rial arising from the net circulating currents in the elementary atomic mag-
nets. That is,

	 B B M= +0 0µ 	 (9.2)

In most situations of importance, the density of magnetic moments is fairly 
uniform throughout the sample. With that condition, the total magnetic 
moment M of the sample of volume V is

	 M = MV 	 (9.3)

For many materials, there is a unique dependence of M on T and B0, so that

	 M M= ( )B T0 , 	 (9.4)

Because of hysteresis, such a relation does not hold for ferromagnetic materi-
als, and so such materials are excluded from this discussion. It is further found 
that the magnetization M is proportional to B0 for many materials.

The measured or bulk magnetic susceptibility χm in defined terms of the applied 
fields H and B0 as

	
χ µ µ

m
M
H

M
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= = =0

0

0

0

M

	
(9.5)

For such linear materials, Equations 9.1 and 9.2 become

	 B H Bm m= + = +µ χ χ0 0( ) ( )1 1 	 (9.6)

The discussion that follows will be restricted to the special case of magneti-
cally weak materials where χm ≪ 1, so that

	 B B≈ 0 	 (9.7)

Unfortunately, the literature reports measured magnetic susceptibilities 
in different systems of units. As seen in the discussion above (particularly 
Equation 9.6), χm is dimensionless in the SI system, so this is the way sus-
ceptibility is presented in Table 9-1. In the CGS system, the susceptibil-
ity as defined in Equations 9.5 and 9.6 differs from SI by a factor of 4π. An 
alternate system used is mass susceptibility, defined as χm divided by the 
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material’s mass density, leaving units of m3/kg in SI or cm3/g in CGS. Yet, 
another system is molar susceptibility, defined as the mass susceptibility 
multiplied by the molar mass, which yields units of m3/mol in SI or cm3/mol 
in CGS.

Notice in Table 9-1 that paramagnetic materials have positive magnetic sus-
ceptibility, but diamagnetic materials have negative susceptibility. This 
indicates that the magnetic dipoles in a paramagnet align with the applied 
magnetic field, while dipoles in the diamagnetic material align opposite the 
field, though weakly.

The SI value of χm for the paramagnetic salts of interest in the subsequent dis-
cussion is only approximately 10−2 or 10−3, while diamagnetic materials have 
χm ∼ −10−6. Thus, the approximation in Equation 9.7 is justified.

9.1.3  Curie law

Practical interest generally focuses on paramagnetic materials, many of 
which are found to obey the Curie law

	
χm

C
T

= ( )Curie Law
	

(9.8)

Table 9-1  Magnetic Susceptibilities of Selected Materials 
under Standard Temperature and Pressure

Magnetic 
susceptibility χm

Paramagnetic materials

Oxygen (O2) 1.9 × 10−6

Sodium 8.4 × 10−6

Aluminum 2.1 × 10−5

Gadolinium sulfate Gd2(SO4)3 ⋅ 8H2O 3.5 × 10−3

Diamagnetic materials

Helium −9.9 × 10−10

Nitrogen (N2) −5.4 × 10−9

Water −9.0 × 10−6

Diamond −2.2 × 10−5

Note:	 Values given are dimensionless in the SI system.
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where C is a constant for a given paramagnetic material and is called the 
Curie constant. The Curie law is an empirical rule discovered by Pierre Curie in 
1895, but it is straightforward (Problem 9.3) to derive the law from the statistical 
properties of paramagnetic materials. Strictly speaking, the Curie  law is 
only  valid in the high temperature limit. As a practical matter, however, 
“high temperature” in this context often means any temperature more than 
a few degrees above absolute zero (see Problem 9.4). For the purpose of this 
discussion, the Curie law, which relates M, B0, and T, may be taken as the 
equation of state for the magnetic system.

The Curie–Weiss law

	
χm

C
T T

=
− 0 	

(9.9)

is a more general modification of the Curie law, which holds for samples that 
are not magnetically weak and where the interaction between the magnetic 
ions is important. T0 is the Curie–Weiss constant, which is usually only a 
fraction of a degree for the paramagnetic salts that will be considered here. 
Thus, the Curie law (Equation 9.8) is a good approximation.

9.1.4  Thermodynamic relations for magnetic materials

As shown in Appendix C, the appropriate form for the infinitesimal work term 
in a magnetic system is

	 dW B d= 0 M 	 (9.10)

Thus, the infinitesimal form of the first law is

	 dU dQ P dV B d= − + 0 M 	 (9.11)

Under normal conditions, there is no change in pressure, and only the 
applied magnetic field B0 is varied. Then in practice, the −P dV term may 
be ignored, compared with the B0 dM term in Equation 9.11. The change in 
volume of a magnetic system upon the application of an external magnetic 
field is known as magnetostriction. This effect is always small and is certainly 
negligible for the paramagnetic salts that will be considered. Then, the first 
law becomes
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	 dQ dU B d= − 0 M 	 (9.12)

The thermodynamic treatment of a magnetic system follows that for the 
familiar  PVT system, with P replaced by −B0 and V by M. Making these 
replacements in the thermodynamic square (Figures 7-8 and 7-9) allows one 
to reproduce the thermodynamic identities and Maxwell relations. The extra 
minus sign on B0 should not cause difficulty, because a constant −B0 outside 
a partial derivative is the same as a constant +B0. The reader should try to 
produce, for example, the Maxwell relation
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∂


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
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= ∂
∂


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
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B T B0 0T
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both from the square and also using the full analysis involving the Gibbs func-
tion G.

9.2  MAGNETIC COOLING

One of the exciting frontiers of physics is the temperature region close to the 
absolute zero. Although the technique of magnetic cooling was first used in the 
1930s, it is still a standard technique used to achieve subkelvin temperatures 
(i.e., <1 K). The recent introduction of the 3He−4He dilution refrigerator has 
meant that temperatures down to 4 × 10−3 K can be maintained, but tempera-
tures significantly lower than this can be produced using the technique of mag-
netic cooling. It is possible to produce temperatures as low as 10−6 K using this 
method, in which the elementary magnetic dipoles comprising the magnetic 
system are the nuclear spins of copper. However, we shall discuss the applica-
tion of this technique in cooling a set of electron spins in a paramagnetic salt.

9.2.1  Theory of magnetic cooling

Before presenting a detailed thermodynamic analysis, it is first necessary to 
understand the principle of the method. A preliminary step is to immerse the 

The lowest temperature records in recent years have been achieved by 
laser cooling, as discussed in Chapter 6.



9.2  Magnetic Cooling    229

sample in a bath of liquid helium at 4.2 K, which is helium’s boiling point at 
P = 1 atm. In Chapter 10 it is shown that the liquid–vapor transition occurs at 
lower temperatures as the pressure is reduced. Thus, the temperature can be 
reduced to about 1 K by pumping on the helium vapor above the bath. Near 1 K 
is a practical limit to cooling by this method, as further reduction in pressure 
leads to more rapid boiling, until the maximum pumping rate is reached for a 
given mechanical pump.

It is at this point that the process of magnetic cooling begins. Figure 9-1 
shows the different stages used in the technique for cooling a paramagnetic 
salt. The salt is suspended by fine cotton threads in the middle of a chamber 
immersed in a bath of liquid helium at 1 K. Surrounding the salt is exchange 
gas, again helium, which may be pumped away so that the salt may be ther-
mally isolated from the surrounding helium bath. The sequence of operations 
is as follows.

	 1.	 The salt is magnetized with the application of a large magnetic field 
B0 of  the order of several tesla, provided by an ordinary electromagnet 
or a superconducting magnet; the latter can produce fields as large as 
10 T. Because of the presence of the exchange gas, the magnetization is 
isothermal. The heat of magnetization is conducted away to the helium 
bath by the exchange gas.

	 2.	 The exchange gas is pumped away, so that the salt is thermally isolated.
	 3.	 The applied magnetic field is slowly reduced to zero so that the salt is 

always in a state of thermodynamic equilibrium and the demagneti-
zation proceeds reversibly. Because the process is also adiabatic, the 
demagnetization is thus isentropic. The temperature is then found to 
fall dramatically. For a starting temperature of 1 K, a demagnetization 
temperature of close to 0.01 K is typical.

Liquid helium
1 K

(a) (b) (c)

Exchange
gas

Pump

1 K ~10–2 K
Paramagnetic

salt1 K

Figure 9-1  Different stages used in adiabatic demagnetization.
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To understand the physical reason for this effect, consider the entropy curves 
shown in Figure 9-2a. The upper curve shows the entropy of the salt in the 
absence of an applied magnetic field. At temperatures of the order of 1 K, only 
the g-fold degenerate ground energy level of the salt is occupied. The degener-
acy g is usually a small number such as 2 or 3. This is illustrated in Figure 9-2b. 
Each magnetic atom has g possible ways of achieving the lowest energy, and so 
the number of different ways of arranging the N atoms is Ω = gN. The entropy of 
the magnetic system is then, using Equation 6.3,

	 S k g N= B ln 	

Because of the steps outlined above, this method of magnetic cooling is 
often referred to as adiabatic demagnetization.

B0

Tf

S

Ti T

B0 = 0
a

b
c

(a)

Energy(b)

Degenerate
levels

g

(c)

Degeneracy
removed
by B0

B0B0 = 0

Figure 9-2  (a) Entropy as a function of temperature for a paramagnetic salt in an applied 
magnetic field B0 and in zero field. The process ab represents an isothermal magnetization, 
and the process bc represents an adiabatic demagnetization to the temperature Tf. (b) and 
(c) The g-fold degeneracy of the energy levels is removed upon the application of B0.
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or

	 S k N g= B ln 	 (9.13)

In fact, the weak magnetic coupling between the neighboring electron spins 
splits the states of the ground level, so that they are not actually degenerate. 
This splitting is so small that at 1 K all these states are thermally occupied, and 
Equation 9.13 holds. At lower temperatures, however, only the actual ground 
state is occupied with Ω = 1, and the entropy falls to zero as shown in the figure.

The lower curve of Figure 9-2a shows the entropy in an externally applied 
magnetic field B0. The application of such a field splits the ground level, as 
shown in Figure 9-2c. The degeneracy is then removed, so the entropy is 
reduced. An alternative viewpoint is to note that the application of B0 aligns 
the dipoles, thus imposing more order on the spin system and reducing the 
entropy. It is a consequence of the third law of thermodynamics (Chapter 12) 
that the two entropy curves meet at absolute zero.

The physical reason for the drop in temperature is now evident. The isothermal 
magnetization is represented by the path ab in Figure 9-2a. The isentropic adia-
batic demagnetization is represented by the path bc. As long as the demagne-
tization process takes place in the region of the shoulder of the entropy curve, 
significant cooling occurs. To achieve temperatures close to the absolute zero, the 
magnetic salt should be chosen so that this shoulder is at very low temperatures.

Some typical paramagnetic salts used are

	 1.	 Iron ammonium alum
	 2.	 Gadolinium sulfate
	 3.	 Cerium magnesium nitrate

The magnetic ion, containing a number of unpaired electron spins, is shown 
in italics in each case. It might be asked why one uses such apparently obscure 
compounds. The answer is that the nonmagnetic part of the compound acts 
as a dilutant, keeping the magnetic atoms well separated and thus reducing 
the interaction between them. This ensures that the drop in entropy due to 
this interaction does not occur until very low temperatures are reached, as 
required.

There is in fact another reason for working within the vicinity of the shoulder of 
the entropy curve. It would be absolutely pointless to demagnetize a magnetic 
salt if it immediately warmed again because of the inevitable “heat leak” into 
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the system from the outside. One can never completely thermally isolate the 
salt. Fortunately, the steepness of the shoulder of the entropy curve in exactly 
the region of interest ensures an enormous heat capacity (C = T dS/dT) to act 
as a thermal ballast. Indeed, the heat capacity of 1 cm3 of iron ammonium 
alum at 0.01 K is equal to that of about 16 tons of lead! This ensures that the 
salt in practice remains cold for a sufficiently long time for experimental use, 
perhaps on the order of hours.

9.2.2  Thermodynamics of magnetic cooling

It is straightforward to calculate the cooling produced in the adiabatic 
demagnetization bc shown in Figure 9-2a. The calculation of the heat 
produced in the isothermal magnetization ab is left as Problem 9.8.

In the process, there are changes in the state functions B0 and S, so it is possible 
to write T = T(B0, S). Therefore,
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(9.14)

where the second term vanishes because dS is zero.

It would be advantageous to bring the S inside the partial derivative, so that it 
can be coupled with ∂T to produce heat capacity. This can be done using the 
cyclical rule (Appendix B)
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or
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Using C T S TB B0 0= ∂ ∂( )/  and the Maxwell relation ( ) ( )∂ ∂ = ∂ ∂M/ /T S BB T0 0 , this 
becomes
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(9.17)

From Section 9.1.2, the magnetic susceptibility is
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(9.5)

Differentiating with respect to T at constant B0,
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(9.18)

Substituting Equation 9.18 into 9.17,
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Note that the last factor here is given by the Curie law (Equation 9.8) as 
( )∂ ∂ = −χm BT C T/ /0

2.

The next step is to substitute Equation 9.19 into 9.14 and integrate with respect to 
B0 and T to obtain the temperature fall. Before integrating, however, it is neces-
sary to find the B0 dependence of C T BB0 0( ), . It might first appear strange to say 
that the heat capacity at constant B0 depends on B0. What this really means is that 
CB0  takes on different values when measured at different but steady values of B0.

In exact analogy to Equation 8.9,
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or
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using Equation 9.5. As well as obeying the Curie law, paramagnetic salts 
usually have a so-called Schottky temperature dependence of the heat capacity 
CB0  in zero magnetic field, given by
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(9.22)

where b is a constant. Using Equation 9.8 in 9.21,
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Integrating at constant temperature,
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The integration constant C TB0 0( , ) is given by Equation 9.22, so
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Substituting Equation 9.19 into 9.14,
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Using the expression for CB0  given in Equation 9.24 along with 
( )∂ ∂ = −χm BT C T/ /0

2,
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Rearranging,
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This is the desired form, which can be integrated from initial state i to final 
state f to find
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or
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If the salt is demagnetized to zero applied field, the final temperature 
reached is
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This relation holds for a salt obeying the Curie law and where the heat capacity 
in zero magnetic field is given by Equation 9.22. Gadolinium sulfate is one 
such salt. Some experimental results are presented in Figure 9-3. The linear 
dependence of (Ti/Tf)2 on B0

2
i is apparent.
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Figure 9-3  Linear dependence of (Ti/Tf)2 with B0
2

i in agreement with Equation 9.29. 
The measurements are for gadolinium sulfate.



236    Chapter 9: Magnetic Systems

PROBLEMS

	 9.1	 Gadolinium sulfate has a magnetic susceptibility in SI units of 
+3.5 × 10−3. Its molar mass is 603 g/mol and its density is 3.01 g/cm3. 
Convert the magnetic susceptibility to mass susceptibility and molar 
susceptibility.

	 9.2	 Xenon gas has a density of 5.89 kg/m3 and molar mass 131.3 g. Its molar 
susceptibility in CGS units is −4.54 × 10−5 cm3/mol. Convert this value 
to the normal magnetic susceptibility χm in dimensionless SI units.

	 9.3	 It can be shown using statistical analysis (see, e.g., Problem 6.9) that the 
mean magnetic moment of a paramagnetic sample is µ tanh(µB/kBT), 
where B is the applied magnetic field, T is the temperature, and µ is the 
magnitude of each individual magnetic moment, which can be either 
“up” with magnetic moment +µ or “down” with magnetic moment −µ. 
Use this result to derive the Curie law.

	 9.4	 In this problem, you will examine the validity of the Curie law at low 
temperatures. (See the preceding problem.) Assume a paramagnetic 
material made up of magnetic moments equal to the Bohr magneton: 
µ µ= = = × −

B / J/Te m� 2 9 27 10 24. . For an applied field of 3.0 T, find the 
temperature at which the exact expression µ µ µ= tanh( / )BB k T  and the 
approximation using tanh(µB/kBT)≈µB/kBT differ by 1%. Then, discuss 
how well the Curie law works at higher temperatures.

	 9.5	 Find the units for magnetic moment M using Equation 9.5, and show 
that these units are consistent with those derived from the mag-
netic moment of a current-carrying loop of wire, equal to the current 
multiplied by the area of the loop.

	 9.6	 The magnetic susceptibility of aluminum at T = 273 K is given by Table 9-1 
as 2.1 × 10−5. (a) At that temperature, what fraction of the maximum mag-
netic moment is achieved in an applied magnetic field of 5.0 T? Assume 
that the individual magnetic moments are equal in size to the Bohr mag-
neton, µ µ= = = × −

B / J/Te m� 2 9 27 10 24. . (b) Repeat using the same applied 
field if the sample is immersed in liquid nitrogen at T = 77 K.

	 9.7	 Use the thermodynamic relations described in Section 9.1.4 to 
reproduce the three remaining Maxwell relations, in addition to one 
found in the text.

	 9.8	 A paramagnetic salt is magnetized isothermally and reversibly from 
zero applied magnetic field to a final value of B0. It obeys the Curie 
law χm = C/T. Show that the heat of magnetization is
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2 	

		  where V is the volume of the salt. Hint: Express S = S(T, B0).
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	 9.9	 The paramagnetic salt of the previous problem is adiabatically and 
reversibly demagnetized from an initial state (T2, B01) to a final state 
(T2,0). The internal energy U = αT 4 where α is a constant. Show that
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2
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2
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8
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αµ 	

		H  int: A natural way to tackle this problem is to write T = T(S, B0). While 
the problem can be solved in this way, it then involves a very nasty 
integral. Instead write T = T(S, M) and recognize that M decreases to 
zero at the end of the demagnetization.
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Chapter 10: Phase Changes

Everyone is familiar with the fact that, if the temperature is raised, ice melts 
into water and then the water turns into steam. Ice, water, and steam are the 
three phases of the bulk substance made up of H2O molecules. It is also a famil-
iar observation that two of the phases can coexist in equilibrium with each 
other. For example, a beaker at 0°C and at atmospheric pressure can contain 
ice floating in water with the mass of the ice remaining constant. Similarly, 
water and steam coexist in a boiling pot at 100°C and at atmospheric pressure. 
In fact, at one particular temperature and pressure (much lower than 1 atm), 
all three phases of H2O may exist together.

Everyday experience gives some sense of the properties that distinguish the 
three phases of water or any substance. Solids appear rigid outside of any con-
tainer. Liquids flow freely to the boundaries of a container but have fixed den-
sity for a given material and are difficult to compress. Gases also flow—and 
hence liquids and gases are both called fluids—but unlike liquids, gases tend 
to expand to fill their container with minimum density. Conversely, gases are 
also easy to compress, compared with liquids. However, these are all qualita-
tive observations that are sometimes difficult to interpret. For example, what 
is the phase of warm butter?

Strictly, a phase consists of a homogeneous region of (P, V, T) space, and those 
regions have definite boundaries; this is certainly so for the ice–water–steam 
example. The next section will make this distinction more precise.

10.1  PVT SURFACES

Consider a system, such as a simple fluid, where P, V, and T are the appropriate 
state variables. Recall that equilibrium states of the system in a single phase 
are uniquely specified by any two of these variables, because P, V, and T are 
connected by the equation of state. Specifying the pair P and V, for example, 
then fixes T. If these variables are plotted along three mutually perpendicular 
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axes, the different equilibrium states of the system define a surface, called the 
PVT surface. The PVT surface for a typical substance is shown in the center of 
Figure 10-1.

10.1.1  PVT surfaces and phases

At first glance, the PVT surface appears complicated, principally because 
it is three-dimensional and thus hard to visualize. It can best be under-
stood as follows. First, consider the isothermal path abcdef in Figure 10-1. 
Experimentally, one could take the system along this path by compressing it 
isothermally in a cylinder. At point a, the system is in the single vapor-phase 
region. As the pressure is increased, the volume decreases until, at b, some 
condensation occurs, with drops of liquid just beginning to appear; that is, 
the substance begins to separate into two distinct phases of quite different 
densities, although both are at the same temperature and pressure. Moving 
from b, where the substance is all vapor, to c, more and more liquid appears 
until, at c, the substance is all liquid; path bc is thus in the two-phase liquid–
vapor region. The boundary at b marks a saturated vapor, while at c there is a 
saturated liquid.

The path from c to d is in the single-phase liquid region. It requires a great 
increase in pressure to achieve a small change in volume, because the com-
pressibility of a liquid is generally small.

At d, the substance begins to solidify, until at e it becomes all solid. Path de is 
in the two-phase solid–liquid region. The path e to f is in the single solid-phase 
region, where enormous pressures are generally required to effect a compres-
sion; thus the slope of ef is very large.

There is a critical temperature Tc above which an isothermal compression, such 
as the one just described, produces no sharp liquid–vapor transition. Upon 
compression, the system becomes more and more dense, moving continu-
ously from being a low-density fluid into a high-density fluid. The isotherm gh 
is an example of this. This effect would also be observed if the nonisothermal 
path, shown as the dotted line starting at a, is followed. Below Tc, as you have 
seen, it is possible for the system to exist in two separate phases, liquid and 
vapor, with quite different densities. At the critical point C, the vapor and the 
liquid have become indistinguishable with the same density. It is customary 
to use the word gas above Tc and the word vapor below Tc. In other words, com-
pressing a gas will not produce condensation.
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The region marked S–V represents the two-phase solid–vapor region where no 
liquid is present. Following the system along an isotherm through this region 
in a similar way to the one just followed through the liquid–vapor region, 
the isotherm would pass from the vapor-only phase, through the two-phase 
solid–vapor phase, and into the solid phase with no liquid ever having been 
encountered.

The L–V and S–V regions are separated by the isotherm at TTP. At this tempera-
ture, and only at this temperature, all three phases may coexist, with the ratio 
of vapor to liquid to solid varying along BA. The line BA is called the triple line 
because of the coexistence of the three phases along it.

10.1.2  Two-dimensional representations

The projections of the PVT surface onto the PV and PT planes are indicated on 
the sides of Figure 10-1 and separately in Figure 10-2. These two-dimensional 

There is a fourth common phase of matter known as plasma, in which 
thermal energy is sufficient to ionize most or all atoms, leaving a sea of 
dissociated nuclei and electrons. This is a common state of matter inside 
stars, where temperatures can reach over one million K. Plasmas are of 
extraordinary importance in nuclear fusion research and in the study of 
electrical discharges. Because of the extreme conditions needed to sus-
tain a plasma, and because it differs so greatly from the three common 
phases of matter, we will not pursue the topic here.
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Figure 10-2  (a) The PT projection and (b) the PV projection for various substances. 
S = solid; L = liquid; and V = vapor.
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diagrams are favored for the continued discussion of phase changes, not only 
because they are easier to draw but also because it is easier to understand the 
physical processes in terms of only two of the variables at a time. The portions 
of the isotherms in the two-phase regions (such as bc and de in Figure 10-1) 
are straight lines, and so they project onto the PT plane as points. In particu-
lar, the triple line projects into the triple point (TP); there is a unique triple 
point for each substance, except helium. The points from the projections of the 
other lines join to form continuous curves, which are the phase boundaries. 
The phase boundaries separating solid from vapor, solid from liquid, and liq-
uid from vapor are called the sublimation, melting, and vaporization curves, 
respectively. These curves are simply the loci of the different sublimation, 
melting, and boiling points.

In the study of thermodynamics, the PT representation is generally favored 
over the PV representation, and so the PT graph is used throughout this chap-
ter. The two graphs in Figure 10-2 make it clear that the PT view is a simpler, 
“cleaner” one in that each phase occupies exclusively a simple region of the 
graph, with mixed phases hidden in the lines. Further, the experimenter gen-
erally has some control over the pressure and temperature and the ability to 
measure them, while a sample’s volume is a consequence of the other two 
parameters. For these reasons, the PT graph is most common.

10.1.3  Equilibrium condition for two phases

Suppose a system consists of two phases of a single substance (also called 
a single component), for example, ice and water, which consist of the single 
substance H2O. If this system is maintained at a constant temperature and 
pressure, you know from Section 7.5 that the condition for thermodynamic 
equilibrium is that the Gibbs function is a minimum.

In this discussion, we adopt the usual notation that extensive quantities per unit 
mass, or specific values, take lower case symbols. Thus, g will be used to symbol-
ize the Gibbs function per unit mass. Let the two phases be labeled 1 and 2 with 
masses M1 and M2. Then, the total mass is M = M1 + M2, and the Gibbs function is

	 G M g M g= +1 1 2 2 	 (10.1)

At equilibrium,

	 dG g dM g dM= = +0 1 1 2 2 	 (10.2)



244    Chapter 10: Phase Changes

If the system is closed so that M is constant,

	 dM dM dM= + =1 2 0 	 (10.3)

Substituting Equation 10.3 into 10.2,

	
g g1 2=

	
(10.4)

Therefore, the equilibrium condition for the coexistence of two phases is that 
the specific Gibbs functions are equal. At equilibrium, any amount M1 (<M) 
of phase 1 may coexist with the remaining amount M2 = M − M1 of phase 2 
because the value of G is unchanged as M1 is altered. This explains the exis-
tence of the two-phase regions of Figure 10-1. The equality of g for the two 
phases at equilibrium is a powerful result, which now leads us directly to the 
Clausius–Clapeyron equation, a general relation of great significance in the 
study of phase transitions.

10.2 � CLAUSIUS–CLAPEYRON EQUATION 
FOR FIRST-ORDER PHASE CHANGES

A first-order phase change in a substance is characterized by a change in the 
specific volume between the two phases, accompanied by a latent heat. A solid 
melting into a liquid and a liquid boiling into a vapor are examples of first-
order phase changes. First-order phase changes are in fact the familiar type of 
phase change. These occur along boundary lines in PT projections, as shown 
in Figure 10-2a.

10.2.1 � Development of the Clausius–Clapeyron 
equation

Consider the generic PT projection shown in Figure 10-3. At A, where the pres-
sure and temperature are P and T,

	 g T P g T P1 2( , ) ( , )= 	 (10.5)
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At the nearby state B, where the pressure and temperature are P + dP and 
T + dT,

	 g T dT P dP g T dT P dP1 2( , ) ( , )+ + = + + 	 (10.6)

Using Taylor’s theorem, Equation 10.6 becomes

	
g T P

g
T

dT
g
P

dP g T P
g
TP T P

1
1 1

2
2( , ) ( , )+ ∂

∂




 + ∂

∂




 = + ∂

∂




 ddT

g
P

dP
T

+ ∂
∂







2

	

where it is assumed that for small changes derivatives higher than the first-
order can be ignored. Using Equation 10.5, this reduces to
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(10.7)

From the thermodynamic identity for G,
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(7.40)

Substituting these into Equation 10.7,

	 ( ) ( )s s dT v v dP2 1 2 1− = − 	

or

	

dP
dT

s s
v v

S S
V V

= −
−

= −
−

2 1

2 1

2 1

2 1 	
(10.8)

T

P

(T, P)

(T + dT, P + dP)

Phase 2

Phase 1 B

A

Figure 10-3  A portion of a phase boundary.
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It is important to realize that the quantities appearing in Equation 10.8 must 
refer to the same mass of the substance in the two phases. This could be a kilo-
gram, a mole, or even a molecule.

A phase change in a system occurring with a change in its entropy implies that 
there is a transfer of heat to or from the surroundings; this is the latent heat L. 
If a fixed mass of phase 1 changes into phase 2 at the temperature T, if follows 
that from Equation 5.4 that L = T(S2 − S1). In terms of unit mass,

	 l T s s= −( )2 1 	 (10.9)

When s2 > s1, latent heat l is positive and heat has to be supplied to the system. 
Substituting Equation 10.9 into 10.8,

	

Clausius Clapeyron equation:–

( ) ( )
dP
dT

l
T v v

L
T V V

=
−

=
−2 1 2 1 	

(10.10)

This is the Clausius–Clapeyron equation for the slope of the phase boundary. 
For this equation to make sense, there has to be a volume change between the 
two phases as well as a latent heat. These are precisely the conditions for a first-
order phase change. The Clausius–Clapeyron equation is a powerful result, 
because it can be applied to any phase boundary in a first-order phase change, 
and because it relates the latent heat directly to the state variables P, V, and T.

Figure 10-4a shows the PT projection for a substance that expands on melt-
ing from the solid to the liquid (vL > vS) and requiring latent heat for the phase 
change, so sL > sS. Then, from Equation 10.10, dP/dT is positive as shown. This is 
typical of most materials. On the other hand, water contracts when ice melts into 
liquid, and so the PT projection is as in Figure 10-4b where dP/dT is negative 
along the solid/liquid boundary. Water belongs to the small class of substances 
that behave in this way. Note that both for water and for the more typical projec-
tion in Figure 10-4a, the other phase boundaries (solid–vapor and liquid–vapor) 
have positive slopes throughout, indicating a lower density for the vapor phase. 
The pressure at any point along one of those other boundaries is called the vapor 
pressure, which clearly tends to be an increasing function of temperature.

The first equality in Equation 10.8 involves variables si and vi, which are in 
lowercase as usual for specific quantities. However, because the equality 
is a ratio of entropy difference to volume difference, the same ratio holds 
for any quantity, and hence the last equality with Si and Vi is valid.
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10.2.2  An example: Melting water and winter sports

At 0°C, the specific volumes of ice and water are 1.091 × 10−3 and 1.000 × 
10−3 m3/kg, respectively, and the latent heat of fusion is 334 kJ/kg. Substituting 
these values into Equation 10.10, the slope of the fusion curve is

	

dP
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L
T V V

=
−

= ×
− ×

= − ×

−( ) ( )( . )

.

2 1

3

8
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9 1 10

1 34 10

334 10 J/kg
273K m /kg3

PPa/K 	

or −133 atm/K. It is often claimed that such an extreme negative slope makes it 
possible to ice skate. This claim should be analyzed carefully.

The bottom of an ice skate is hollow ground, as in Figure 10-5a, so an enormous 
pressure is built up under the sharp edge—this is the key to the argument. As 
a rough estimate, a skate blade that is 30 cm long and 3 mm wide has a cross-
sectional area of about 10−3 m3, but because of the hollow-ground shape the 
actual contact area might be say 10% of this, or 10−4 m3. Then, the pressure cre-
ated on this surface by an 800-N skater is 800 N divided by the area (assuming 
the skater moves on one skate at a time), which is about 8 × 106 Pa or 80 atm.

When water forms into ice, the molecules join by hydrogen bonding. 
The nature of these bonds coupled with the unusual 104.5° angle in the 
H–O–H bond leaves more empty space in ice relative to water, leading to 
the anomalous density increase.

P P

SS
L L

V V
TP TP

Vaporization

Sublimation

Melting

(a) (b)

C C

dP/dT > 0 dP/dT < 0

T T

Figure 10-4  (a) A PT projection for a typical substance, which expands on melting. 
(b) A PT projection for a substance that contracts on melting, such as water.
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Now suppose that the temperature is −10°C. At one atmosphere, the ice is in 
the state α on the PT projection of Figure 10-5b, and there is no water present. 
When the ice skater puts pressure on the ice, the state moves along the con-
stant temperature line αγ. In theory, as soon as the phase boundary is reached 
at β, some ice melts so that the edge of the skate sinks in fractionally, with the 
load now spread over a larger area, stabilizing the pressure. The state thus 
remains fixed at β, with the liberated water acting as a lubricant. The ques-
tion must be asked: Is 80 atm or so sufficient to achieve this goal? From above, 
dP/dT = −133 atm/K, so a pressure increase of (133 atm/K)(10 K) = 1330 atm 
would be required to go from α to β. Therefore, this explanation for the suc-
cess of the skater (and the general “slipperiness” of ice) appears inadequate. 
Although the question is still debated, it is now believed that frictional heating 
provides a better explanation.

It is often said that skiing and snowboarding also work by the pressure-melting 
effect. The analysis of this question is left to Problem 10.11. But as a hint, 
consider that the bottom surfaces of skis or snowboard are made slippery with 
wax.

10.2.3  Melting point of ice and boiling point of water

It is well known by mountaineers—and even people living in mountainous 
regions at altitudes above 1 km—that the boiling point of water is affected by 
the ambient pressure. It is straightforward to analyze this problem using the 
Clausius–Clapeyron equation.

Skate

Hollow ground

Ice

(a)

(b) P

TP

0°C–10°C

Vapor

C

T

WaterIce

β

γ

α

Slope = –134 atm/K–1

1 atm
atm1

50

Figure 10-5  The physics of skating: (a) hollow-ground ice skate. (b) PT projection for 
pure water.
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The specific volumes of water and steam at 100°C and 1 atmosphere are 
1.043 × 10−3 and 1.673 m3/kg, respectively, and the latent heat of vaporization 
is 2257 kJ/kg. Substituting into Equation 10.10,

	

dP
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T V V
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32257 10
1 672

3620
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373 K m /kg
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3

	

or about (1/28) atm/K. On the top of Mount Everest where the pressure 
is only 0.35 atm, the boiling point of water is depressed by (0.65 atm)/
(1/28 atm/K) = 18 K or 18°C, so the boiling point is only 82°C. In Denver, 
Colorado the altitude is close to 1.6 km, and typical air pressure is 0.82 atm, 
and a similar calculation gives a boiling point of 95°C. Even at that altitude, 
cooking times for foods such as noodles and rice are affected.

10.2.4  Equation of the vapor pressure curve

It is straightforward to obtain an approximate equation for the vapor pres-
sure curve, if it is assumed (i) that the specific volume of the vapor vV is much 
larger than the specific volume vL for the liquid and (ii) that the vapor obeys the 
equation of state for an ideal gas.

Because vV ≫ vL, the difference in volumes in Equation 10.10 is essentially 
the specific vapor volume vV. Then, with the equation of state for one mole 
vV = RT/P, Equation 10.10 becomes
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≈ =
V

2

	
(10.11)

Integration then gives

	
ln ( )P

l
RT

= − + constant onemole
	

(10.12)

where it is assumed that l is constant over the region of the integration.

This equation explains how the saturation vapor pressure varies with tempera-
ture. Equation 10.12 predicts the shape of the observed vapor pressure curves 

In fact, the PVT surface of water is somewhat more complex than has been 
suggested, but that does not affect the general validity of this discussion.
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in Figure 10-4, which are monotonically increasing and concave upward (see 
Problem 10.13).

10.3 � VARIATION OF GIBBS FUNCTION G 
IN FIRST-ORDER TRANSITIONS

There are some simple analytical arguments from which one can obtain 
information about the changes of entropy and volume in a first-order phase 
transition.

First, consider how the specific Gibbs function g varies along the isobar XY in 
Figure 10-6a. Along XY, the solid–liquid phase boundary is at temperature T0. 
From Section 7.5,
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T
s

P 	
(7.40)

Therefore, the g versus T plot has a negative slope, because entropy is always 
positive. Taking the derivative of Equation 7.40,

Equation 10.12 is used in very low-temperature thermometry, at less than 
1 K, by relating the measurable pressure above a bath of liquid helium 
to the temperature. In practice, a pressure gauge is simply calibrated to 
read the absolute temperature.
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gL
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(a) (b)

S L
T0 T0 TT

Figure 10-6  (a) An isobaric section XY across a PT projection; (b) It is shown in the text that 
the Gibbs functions for the two phases vary as shown here.
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where the introduction of cP follows from Equation 7.17, and the inequality is 
due to the fact that cP is always positive. Therefore, a plot of g versus T always 
bends concave down, toward the T axis. The Gibbs function g is a smoothly 
varying function of T and P, which can take different values for all T and P. 
Figure 10-6b shows the Gibbs functions for the solid and liquid phases. At T0, 
they must be equal, so the curves cross at that point. Also, for T < T0, the solid 
phase is the stable phase. This means that its g curve must be the lower one in 
this region, in order to minimize the Gibbs function for the system. The higher 
g curve for the liquid phase represents the unstable phase. g for the constant 
P section varies then as in Figure 10-7a, with a discontinuity in the slope at 
T0. This implies a discontinuity in s as shown in Figure 10-7b, with the higher 
temperature phase having the greater s.

Another approach is to consider the isotherm X′Y′ of Figure 10-8a. This time 
the phase boundary occurs at pressure P0, as shown. A similar argument gives 
the plots of g versus P for the solid and liquid phases, as shown in Figure 10-8b. 
In this case,
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Figure 10-7  (a) The variation of g with T along the section XY of Figure 10-6. (b) The corre-
sponding behavior of the entropy. Notice that the high-temperature phase has the higher 
entropy.
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because volume is positive. Taking another derivative,
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where the inequality follows from an empirical fact: all known substances suf-
fer a decrease in volume upon an increase of pressure. Thus, the Gibbs func-
tion varies as in Figure 10-9a, with a discontinuity in the slope at P = P0. From 
this, it follows that there is a corresponding discontinuity in volume. This 
implies that v varies as in Figure 10-9b, with the high-pressure phase having 
the smaller specific volume. This result is consistent with experience.
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g v

P P
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S

Figure 10-9  (a) The variation of g with P along the section X′Y′ of Figure 10-8. (b) The cor-
responding behavior of the specific volume. Notice that the high-pressure phase has the 
smaller specific volume, as expected.
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Figure 10-8  (a) An isothermal section X′Y′ across a PT projection and (b) the text explains 
why the Gibbs function varies as shown here.
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10.4 � SECOND-ORDER PHASE CHANGES

For a first-order phase change, the following facts hold true. There is a change 
in the specific volume; there is a latent heat, which means that there is a change 
in the specific entropy; and there is no change in the specific Gibbs function. 
That is,

	 g g v v l s s1 2 1 2 1 2and= ≠ ≠ ≠, , ,0 	
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a first-order phase change is one in which g is continuous, but the first-order 
derivatives of g with respect to the natural variables P and T are discontinuous.

Second-order phase changes can be defined by extending this classification. 
In a second-order phase change, g is continuous; the first-order derivatives of g 
with respect to T and P are now continuous; therefore, there is no change in the 
specific volume and there is no latent heat. However, there are discontinuities 
in the second-order derivatives. That is, g, s, and v are continuous, but
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are discontinuous. Recall that the heat capacity, coefficient of thermal 
expansion, and compressibility are given by
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This means that cP, β, and κ are discontinuous in second-order phase changes. 
The second and third-partial derivatives are the same, by the Maxwell relation 
Equation 7.41, apart from a difference in sign, which is of no importance to the 
question of continuity.

This classification of phase changes can be further extended to third and even 
higher order phase changes and is known as the Ehrenfest classification.
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10.5 � EXAMPLES OF PHASE CHANGES 
OF DIFFERENT ORDERS

There are many examples of first- and second-order phase changes, or transi-
tions, in physics, metallurgy, and chemistry. Below are examples of a few in 
each category.

10.5.1  First-order phase changes

	 1.	A  solid melting into a liquid, a liquid boiling into a gas, and a solid sub-
liming into a gas are the most familiar examples of a first-order phase 
change.

	 2.	 Below a certain characteristic temperature, the critical temperature Tc, 
certain materials become superconductors. They behave as normal con-
ductors at temperatures above Tc, exhibiting electrical resistance, but 
below Tc they have zero electrical resistance, as shown in Figure 10-10. 
A current circulating in a ring of lead would go on circulating forever, 
provided the lead was kept cold at a temperature less than Tc = 7.2 K. The 
values for Tc for a few superconductors are given in Table 10-1.

The superconducting phase can be destroyed by raising the temperature above 
Tc in the absence of a magnetic field. At any T < Tc, the superconducting phase 
may also be destroyed by an applied magnetic field above a certain critical 

R

T
Tc

Figure 10-10  Resistance as a function of temperature for a superconductor. Below tem-
perature Tc, the resistance is zero.
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value of Bc(T); this critical field increases as the temperature is reduced, reach-
ing the value Bc(0) as T→0. This is illustrated for a typical superconductor in 
the phase diagram shown in Figure 10-11, where the phase boundary sepa-
rates the normal from the superconducting phase. The third column of Table 
10-1 gives the values of Bc(0) for different superconductors.

The transition from a superconductor to a normal conductor is a first-order 
change, provided the transition takes place in an applied magnetic field. The 
arrow 1 indicates such a change in Figure 10-11.

Table 10-1  Values of Critical (Transition) Temperature Tc for a Few Superconductors

Superconductor Critical temperature Tc (K) Critical field Bc(0) (T)

Tin 3.7 0.031

Mercury 4.2 0.042

Lead 7.2 0.081

Niobium 9.2 0.26

Nb3Sn 18.1 29a

YBa2Cu3O7 93 250a

HgBa2Ca2Cu4O1+x 134 >100a

a	 Type II superconductors, with an upper critical field at which electrical resistance vanishes and a 
lower critical field at which magnetic flux is expelled. Values given are the upper critical field.

Applied magnetic
field

B0

Superconductor Normal

1

2

TTc

Bc(0)

Figure 10-11  A phase diagram for a typical superconductor. The transition 1, occurring in 
an applied magnetic field, is a first-order phase transition. The transition 2, occurring due 
to changing temperature in the absence of a magnetic field, is an example of a second-
order phase transition.
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10.5.2  Second-order phase changes
	 1.	 Magnetic materials fall broadly into three main classes; the diamag-

netic class, where the atoms of the material have no permanent mag-
netic moment but one is induced on the application of a magnetic field; 
the paramagnetic class, where the atoms have a permanent magnetic 
moment but it requires the application of an external magnetic field to 
overcome the random orientation of the individual moments and to give 
the material a net magnetic moment; and the ferromagnetic class, where 
the atoms have a net magnetic moment, which couple together to give the 
material a net moment even in the absence of an external magnetic field. 
As the temperature of a ferromagnet is raised, it becomes a paramagnet at 
the Curie temperature. This transition is a second-order phase change.

	 2.	 The transition of a superconductor to a normal conductor is a second-order 
phase change, provided the transition does not take place in an applied 
magnetic field. Then, as described above, the transition is of first-order. 
The second-order phase change is indicated by the arrow 2 in Figure 10-11.

	 3.	P erhaps, the most dramatic example of a second-order phase change occurs 
in liquid helium. Helium is a liquid below 4.2 K at 1 atm. As the tempera-
ture is lowered through 2.2 K, it changes from a normal liquid to a super-
fluid liquid with quite extraordinary properties. As the name implies, the 
superfluid phase is marked by a complete absence of any viscosity, or resis-
tance to flow. A rotating mass of superfluid helium would go on rotating 
forever, in exact analogy to the persistence of the current in a ring of super-
conductor, provided that the velocity is below a certain critical limit.

To describe superfluid helium in more detail, some new notation is needed. 
Helium can exist as two isotopes: the common isotope is 4He, commonly called 
helium four; and the rare lighter isotope is 3He, commonly called helium three. 
Only the common isotope 4He undergoes the superfluid transition at 2.2 K. 
Unfortunately, the two phases are confusingly called Helium I for the normal 
phase and Helium II for the superfluid phase, a numbering system that has 
nothing to do with the mass number.

Niobium has the highest transition temperature of any elemental supercon-
ductor. In the 1980s, superconductors such as YBa2Cu3O7 were discovered 
with transition temperatures above 77 K, the boiling point of nitrogen at 
1 atm. This raised the possibility of more practical applications and generated 
a search for materials with even higher transition temperatures. A room-tem-
perature superconductor has not been found, but if it were there would be 
enormous energy savings in electrical transmission and other applications.
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A plot of the heat capacity of 4He against temperature is shown in Figure 10-12. 
The discontinuity in the heat capacity at 2.2 K is clear. Because of the resem-
blance of this curve to the Greek letter lambda, the transition temperature is 
called the lambda point.

10.5.3 � Ehrenfest equations for second-order 
phase changes

There exist two simple relations for the slope dP/dT of the phase boundary 
in a second-order phase change. It is possible to derive these two relations in 
an analogous manner to that used in deriving the Clausius–Clapeyron equa-
tion for the slope of the phase boundary in a first-order phase change. The 
Clausius–Clapeyron equation does not give the slope of the phase boundary 
for a second-order transition, because both l and Δv vanish, with Equation 
10.10 giving an indeterminate answer for dP/dT.

Consider again Figure 10-3, where there is now a second-order phase change 
between the two phases, and the solid line is the phase boundary for this tran-
sition. As before, consider the two neighboring points A and B on the phase 
boundary at (T, P) and (T + dT, P + dP). To begin, recall that in a second-order 

Helium 3 is a rare isotope, found at barely more than one part per million 
in naturally occurring helium. It also exhibits superfluid behavior, but 
only at extremely low temperatures below about 3 mK.
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Figure 10-12  The λ-point anomaly in the heat capacity of 4He.
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phase change there is no change in either s or v in going from one phase to 
another. Therefore,

	 At A 1 2, ( , ) ( , )s T P s T P= 	 (10.14)

	 At B 1 2, ( , ) ( , )s T dT P dP s T dT P dP+ + = + + 	 (10.15)

Using Taylor’s theorem and keeping only first-order derivatives for small 
changes, Equation 10.15 becomes
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This can be simplified using Equation 10.14
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(10.16)

Multiplying Equation 10.16 through by T and remembering that
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and the Maxwell relation

	

∂
∂





 = − ∂

∂






s
P

v
TT P 	
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Equation 10.16 reduces to

	 c dT Tv dP c dT Tv dPP P1 1 2 2− = −β β 	 (10.17)

where the subscripts on cP and β refer to the two phases. Solving for dP/dT in 
Equation 10.17,

	

dP
dT

c c
Tv

C C
TV

P P P P= −
−

= −
−

1 2

1 2

1 2
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(10.18)

This is the first Ehrenfest equation. As in the case of the Clausius–Clapeyron 
equation, the extensive quantities (here CP and V) must refer to the same mass 
of the substance in each phase.
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Now consider the continuity of v in a second-order transition

	 At A 1 2, ( , ) ( , )v T P v T P= 	 (10.19)

	 At B 1 2, ( , ) ( , )v T dT P dP v T dT P dP+ + = + + 	 (10.20)

Following the same procedure as above, applying Taylor’s theorem to Equation 
10.20 and keeping only first-order derivatives gives
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Using Equation 10.19, this simplifies to
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(10.21)

Remembering that
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Equation 10.21 becomes

	 β κ β κ1 1 1 1 2 2 2 2v dT v dP v dT v dP− = − 	 (10.22)

Collecting terms, and remembering that v1 = v2,
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β β
κ κ
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2 1 	
(10.23)

This is the second Ehrenfest equation.

A good example of the application of the first Ehrenfest equation is in deter-
mining the slope of the phase boundary between He I and He II. Figure 10-13 
is the phase diagram for 4He, where the λ line is the phase boundary for the 
second-order phase change between the two liquid phases (normal and super-
fluid). Measurements give the values of cP and β for the two phases. Equation 
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10.18 then gives results in good agreement with value of the slope determined 
in other ways (see Problem 10.15).

10.6 � SUPERCONDUCTIVITY AND 
SUPERFLUIDITY

This chapter concludes with a brief account of the theoretical explanation of 
superconductors and superfluids, including some parallels between them. 
You have already seen that the persistent flow in a rotating superfluid resem-
bles the persistent current flow in a superconducting ring.

According to quantum mechanics, particles in a restricted geometry exist in 
discrete quantum states with different energies, as in Figure 6-9. In the con-
densed state, under conditions of high particle number-density and low tem-
peratures, quantum effects become manifestly important, because at high 
particle densities there is significant overlap in the quantum-mechanical 
wave functions of neighboring particles. This is particularly so for electrons in 
a metal and the light atoms of liquid 4He and liquid 3He.

Notice on Figure 10-13 that the solid phase is only reached upon the 
application of pressures of 25 atm or greater.

40

Solid He

P (atm)

Liquid He I
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Figure 10-13  Phase diagram for 4He. The normal liquid phase is called He I, and the super-
fluid phase is called He II.
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Because of the indistinguishability of atomic and subatomic particles, such par-
ticles can be either bosons or fermions. There is no restriction on the number of 
bosons that can occupy a single quantum state; however, only one fermion can 
occupy each quantum state. Atomic particles have the property of spin, which is 
a measure of their intrinsic angular momentum. Particles with half-integer spin 
behave as fermions, and those with integer spin (including zero) behave as bosons. 
Electrons, which have half-integer spin, are thus fermions. In contrast, the nuclei 
of 4He, which have zero spin (two protons with opposed spins and two neutrons 
also with opposed spins), are bosons. However, the nuclei of 3He, with one less 
neutron than 4He, have half-integer spin and therefore form a fermion system.

How does the superfluid state occur in 4He? As the temperature is lowered, all 
the 4He atoms pack into the lower-energy quantum states until, at a sufficiently 
low temperature, they are all in the same ground state. 4He atoms can do this 
because they are bosons. The superfluid state is one in which all the 4He atoms 
are in the same quantum state.

How does superconductivity occur? The electrons are precluded from all 
packing into the same quantum state, because they are fermions. However, 
the most energetic electrons can move as pairs through the metal lattice, 
with their spins opposed so that these pairs behave as bosons with zero spin. 
The pair separation can be as great as 100 atomic diameters. These so-called 
Cooper pairs can all occupy the same lowest energy quantum state at low tem-
peratures, and this gives rise to superconductivity.

The question now arises as to whether a similar pairing of the nuclei of 3He can 
occur, so that these 3He pairs behave as a boson system, giving rise to super-
fluid phase. The theory here preceded the experimental evidence. Theory 
shows that such pairing can occur, except that the half-integer spins add to 
give a spin of one for the pair and thus a boson system. The superfluid phase 
in 3He was found at 3 a.m. on Thanksgiving Day at Cornell University in 1971, 
but not until the temperature had been reduced to 2.6 mK. In fact, a second 
superfluid phase was also found at the even lower temperature of 1.8 mK. The 
Cornell experimenters were actually following the solid–liquid transition as a 
function of temperature when they made their discovery.

The phase diagram for 3He is shown in Figure 10-14. The boundary line 
between the normal liquid and the two superfluid phases A and B denotes 
a second-order transition, while the boundary between the two superfluid 
phases denotes a first-order transition. Below 1 mK, the vapor pressure is so 
small that it cannot be shown on this scale.

Further discussion of fermions and bosons is given in Chapter 13.
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PROBLEMS

	10.1	A  small amount of pure liquid is contained in a glass tube from which 
all the air has been removed (Figure 10-15a). The volume of the tube 
is significantly greater than the critical volume Vc of the enclosed liq-
uid. (a) Describe what happens as the temperature is raised so that the 
substance traverses the path XY on the PV projection in Figure 10-15b. 
(b) If the volume of the tube were equal to Vc, what would you observe 
as the temperature is raised?

	10.2	 Gas is contained in a glass bulb of volume 250 cm3 (see Figure 10-16). 
A capillary of length 10 cm and of diameter 1 mm is connected to the 
bulb. Mercury is forced into the bulb compressing the gas and forcing 

40
P (atm)

30

20

10
0.9 mK

First-order

AB

1.8 mK 2.6 mK

Solid

Normal liquid
Second-order

0
10–4 10–3 10–2 10–1 1 3.3 T (K)

Vapor
C
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it into the capillary so that it occupies a length of 1 cm. This process 
occurs isothermally at 20°C. The initial pressure of the gas is 10−3 Torr. 
(a) What is the final pressure of the gas in the capillary if it is nitrogen? 
(b) What is the final pressure of the gas in the capillary if it is water 
vapor? (c) How much water condenses? Justify any assumptions. (The 
vapor pressure of water at 20°C is 17.5 Torr.)

	10.3	 Consider the isotherm at T on the PV projection shown in Figure 
10-17. At the point K, the substance is a mixture of liquid and vapor. 
Let the masses of liquid and vapor be m1 and mv and the total mass of 
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the substance be m. Then, the volume occupied by the mixture at K is 
m1v1 + mvvv, where v1 and vv are the specific volumes of the liquid and 
vapor. Let the specific volume of the mixture at K be v. Show that

	 m v v m v v1 1( ) ( )− = −v v 	

		  This result, which gives the ratio mv/m1, is known as the “lever rule,” for 
obvious reasons. The ratio mv/m1 is called the quality of the mixture.

	10.4	A t the critical point, (∂P/∂V)T = 0 and (∂2P/∂V2)T = 0. Show that, for a 
van der Waals gas (see Section 3.5.4), the critical point is at
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	10.5	 The vapor pressure of camphor is as follows:

		  By plotting ln P as a function of 1/T, estimate the latent heat of 
vaporization.

	10.6	 The equations of the sublimation and the vaporization curves of a par-
ticular material are given by

	 ln 4 6 for sublimationP T= −0 0. / 	

	 ln 3 4/ for vaporizationP T= −0 0. 	

		  where P is in atmospheres. (a) Find the temperature and pressure 
of the triple point. (b) Show that the molar latent heats of vaporiza-
tion and sublimation are 4R and 6R. You may assume that the spe-
cific volume in the vapor phase is much larger than those in the liquid 
and solid phases. (c) Find the latent heat of fusion. Hint: Consider a 
loop round the triple point in the PT projection. Because S is a state 
function,
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	10.7	 The phase diagram for 3He is as in Figure 10-18. Discuss the variation 
of G along the isobar XY. What does this tell you about the entropy of 
the solid phase compared with the entropy of the liquid phase at the 
lowest temperature? The result should surprise you.

Temperature (°C) 30.8 55.0 62.0 78.0

Pressure (Torr)   1.04   3.12   4.22   7.8
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	10.8	T in can exist in two forms, gray tin (also called alpha, a brittle and 
nonconductive form) and white tin (also called beta, the metallic form 
that conducts electricity). Gray tin is the stable form at low tempera-
tures and white tin the stable form at high temperatures. There is a 
first-order transition between the two phases with a transition tem-
perature of 286 K at a pressure of 1.00 atm. What is the change in this 
transition temperature if the pressure is increased to 100 atm? (The 
latent heat for the transition is 2.20 × 103 J/mol. The densities of gray 
and white tin are 5.77 × 103 kg/m3 and 7.37 × 103 kg/m3. The atomic 
weight of tin is 118.7.)

	10.9	 The Curie temperature for nickel for the phase change from the fer-
romagnetic phase to the paramagnetic phase is 630 K at a pressure 
of 1.0 atm. If the pressure is increased by 100 atm, calculate the shift 
in the Curie temperature. [In this phase transition, cP changes by 
6.7 J/(K · mol) and β changes by 5.5 × 10−6 K−1. The density of nickel is 
8.91 × 103 kg/m3, and its atomic weight is 58.7.]

	10.10	A s an alternative derivation of the Clausius–Clapeyron equation, 
begin by using the fact that g1 = g2 along the phase boundary shown in 
Figure 10-3. Then apply the thermodynamic identity for G (Equation 
7.38) and solve for dP/dT.

	10.11	 Consider sliding along the icy surface of snow on a mountain using 
skis or a snowboard. Make reasonable estimates of the surface area 
of the skis or snowboard and the mass of the person on board. Use 
those estimates to address the question of whether the pressure on 
the surface forms a thin layer of water that helps the person glide with 
reduced friction.

	10.12	 The two common phases of pure carbon are diamond and graphite. At 
1 atm and 298 K, graphite is more stable, because its Gibbs function 
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Figure 10-18 
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is lower by about 2.9 kJ/mol. (a) Using the densities (3520 kg/m3 for 
diamond and 2260 kg/m3 for graphite), find the pressure required for 
diamond to become more stable. (b) If this process occurs naturally 
under rock with density 3000 kg/m3, what depth of rock is required? 
(Assume no change in temperature.)

	10.13	 Use Equation 10.12 to argue that the vapor pressure curve should be 
concave upward, as it is in Figure 10-4 for both sublimation and boiling.

	10.14	 Using Equation 10.12, graph the vapor pressure curve for water from 
50°C to 150°C. Assume that the latent heat is constant at the value it 
assumes at 100°C, which is 2260 kJ/kg. Compare the shape of the 
curve with the one shown in Figure 10-4b.

	10.15	 Use the first Ehrenfest equation to compute the slope of the transi-
tion line dP/dT for liquid helium at 1 atm and 2.17 K. Use the following 
data: density = 147 kg/m3; expansion coefficient = +0.022 K−1 (normal) 
and −0.043 K−1 (superfluid); specific heat = 8.5 J/(g · K) (normal) and 
16.0 J/(g · K) (superfluid). Compare with the measured value for the 
slope −78 atm/K.

	10.16	 The vapor pressure of water is 94.4 kPa at 98°C and 108.9 kPa at 102°C. 
The density of liquid water at 100°C is 958 kg/m3. (a) What is the den-
sity of steam at that temperature? (b) What is the entropy change for 
1 kg of water when it boils at 100°C?

	10.17	 For boiling water at 1.0 atm and 100°C, the latent heat is 40.7 kJ/mol. 
Use these data along with Equation 10.12 to graph the vapor pressure 
curve from 90°C to 100°C, assuming a constant latent heat. Find the 
boiling point of water at Denver, where P = 0.82 atm.

	10.18	 Carbon dioxide has no liquid phase at atmospheric pressure. Instead, 
it sublimates from a solid to vapor at −78.6°C, with latent heat 573 kJ/kg. 
The vapor pressure at a slightly lower temperature, −80.0°C, is 0.89 atm. 
What is the density of CO2 gas when it sublimates at −78.6°C? Compare 
your result with the ideal gas law.
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Chapter 11: Open Systems 
and Chemical Potential

There are many physical systems in which the quantity of matter is not fixed. 
These are called open systems. This short chapter will show how such systems 
are treated in thermodynamics by giving a brief introduction to the concept of 
chemical potential.

11.1  CHEMICAL POTENTIAL

As an example of such a system, imagine a block of ice floating in water 
(Figure 11-1). As the ice melts, its mass decreases because there is a transfer 
of H2O molecules across the phase boundary dividing the ice from the liquid 
water. Another example is a chamber containing a small hole through which 
gas may enter from or leave to the surroundings; the gas in the chamber is then 
a system of variable mass.

11.1.1 � Chemical potential and internal energy U

For a variable-mass system such as the gas-filled chamber with a hole in a wall, 
it is necessary to modify the thermodynamic identity

	 dU T dS P dV= − 	 (5.10)

to allow for the extra energy brought into the system by the additional 
particles. This extra energy is clearly of importance if it can be released to the 
rest of the system, and this could be the case if the particles were involved 
in, say, a chemical reaction of some form. Suppose for a moment that the 
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system consists of only one type of particle, and dN particles are added. Then 
Equation 5.10 can be modified as

	 dU T dS P dV dN= − + µ 	 (11.1)

where μ is called the chemical potential, defined as the increase in the 
internal energy per particle added under conditions of constant S and V. 
That is,

	

µ = ∂
∂





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U
N S,V

	

(11.2)

If there is more than one type of particle, Equation 11.1 has to be modified 
(see Problem 11.1) to

	

dU T dS P dV dNi i

i

= − +∑µ
	

(11.3)

where the chemical potential for the ith type of particle is µi i S,V,NU N k= ∂ ∂( )/  
and the symbol Nk means that all the other N’s except Ni are held constant. 
It  is  best to assume for the moment that there is only one type of particle 
present and extend the argument to the more general case of the presence 
of different types of particles only when this is appropriate.

Even if a particular type of particle is initially absent from the system, that 
does not mean that the corresponding μ is zero, because it is a measure 
of the effect on U brought about by the addition of that type of particle.

Ice block

Water

Figure 11-1  Block of ice floating in water is a common example of an open system.
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11.1.2  Chemical potential and Helmholtz function F

Although the definition of μ has a clear physical interpretation, Equation 11.2 
is often inconvenient because of the requirement of constant entropy. Another 
definition of μ can be given in terms of the Helmholtz function F. F is related 
to U and S by

	 F U TS= − 	 (7.21)

After differentiating as in Section 7.4:

	 dF dU T dS S dT= − − 	 (7.22)

it follows using Equation 11.1 that

	 dF P dV S dT dN= − − + µ 	 (11.4)

Therefore
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(11.5)

That is, μ is the increase of the Helmholtz free energy upon the addition of one 
particle under conditions of constant T and V.

The connection between μ and F may be expanded using the relationship 
between F and the statistical partition function Z:

	 F Nk T ZB= − ln 	 (7.36)

Equation 11.3 is an important result. It is a more general form of the 
thermodynamic identity presented in Equation 7.2. Equation 11.3 is 
more general because it allows for changes is internal energy, volume, 
and particle number. This same approach may be applied to the other 
thermodynamic identities from Chapter 7, involving H, F, and G.
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Using this form of F in the expression for μ in Equation 11.5 gives
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(11.6)

11.1.3  Chemical potential and Gibbs function G

By a similar process, chemical potential can be linked to the Gibbs function 
G. Recall from Equation 7.37 that

	 G H TS U PV TS= − = + − 	

where the second equality uses the fact that H = U + PV. Differentiating,

	 dG dU P dV V dP T dS S dT= + + − − 	

Using Equation 11.1, this simplifies to

	 dG V dP S dT dN= − + µ 	 (11.7)

Therefore
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(11.8)

which is another useful way to think of the chemical potential. In order words, 
μ is the increase of the Gibbs free energy upon the addition of one particle 
under conditions of constant T and P.

Equations 11.2, 11.5, and 11.8 give three independent ways to define 
chemical potential. Notice that in each case the definition of μ is the partial 
derivative of a thermodynamic potential (U, F, and G, respectively) with 
respect  to the particle number, with the appropriate natural variables held 
constant.

The definition of μ in terms of G (Equation 11.8) is of particular importance. 
Note that G is an extensive quantity, which means that it must be proportional 
to the particle number. Therefore, it is possible to express G as

	 G T,P,N N T,P( ) ( )= φ 	 (11.9)
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where ϕ(T, P) depends on the particular system being considered. 
Differentiating this with respect to N, keeping P and T constant,

	 µ φ= ( )T,P 	 (11.10)

which is independent of N. Also, it follows from Equation 11.9 that
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(11.11)

This is a more useful statement than the one given in Equation 11.8, which refers 
to the incremental increase in the Gibbs free energy per particle under condi-
tions of constant T and P. In general, when there are a number of different types 
of particle present (for example in air with N2, O2, and smaller amounts of other 
gases), this incremental increase depends on the existing particle populations. 
In that case Equation 11.11 must be modified, as shown below in Equation 11.16.

On the other hand, it is impossible to obtain similar simple results for μ in terms 
of U and F. μ is neither U/N nor F/N, because the natural variables for U and 
F are not both intensive as they are for G. For example, consider U. Because 
U is extensive, the analog to Equation 11.9 is
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(11.12)

where the new function ϕ′ depends on the entropy per particle S/N and volume 
per particle V/N. By Equation 11.2, differentiating with respect to N at constant 
S and V gives μ:

	
µ φ φ φ= ′ + ∂ ′
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(11.13)

Therefore, μ is not simply U/N but instead involves extra terms that depend on 
the particle number.

As another way to see the special relationship between μ and G, note that 
the quantities U, S, V, and Ni in Equation 11.3 are all extensive. Therefore, if 

Thus, μ is simply the Gibbs free energy per particle, provided only 
one type of particle is present.
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the system is scaled up in size by a factor (1 + α), then each of the extensive 
quantities increases by the same proportion. Suppose now that α ≪ 1, so that 
α = ΔU/U ≈ dU/U. Similarly for the other extensive quantities in the limit of 
small α:

	
α = = = =dU

U
dS
S

dV
V

dN
N

i

i 	
(11.14)

for all i. Applying these results to each term in Equation 11.3,

	

U TS PV Ni i

i

= − +∑µ
	

(11.15)

where the α in each term has been cancelled.

Equation 11.15 can be related to the Gibbs function by recalling that

	 G H TS= − 	 (7.37)

and

	 H U PV= + 	 (3.7)

Therefore G = U + PV − TS, and by comparison with Equation 11.15

	

G Ni i

i

=∑µ

	
(11.16)

Equation 11.16 is the generalization of an earlier result, Equation 11.11. 
It reduces to Equation 11.11 if all the Ni except one are set equal to zero.

11.1.4  Chemical potential and equilibrium

The concept of chemical potential is a particularly useful tool for consider-
ing equilibrium between two systems that are allowed to exchange parti-
cles. For  simplicity, the discussion in this section will focus on two systems 
consisting of different phases of the same substance. Thus, there will be a 
single particle type throughout both systems. A good example of this is ice 
melting in water (Figure 11-1), in which there is an exchange of particles (water 
molecules) between the two systems. What are the general conditions for the 
two phases to be in equilibrium against this particle exchange?
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Figure 11-2 shows two phases of the same substance, labeled A and B, occupy-
ing a chamber with rigid adiabatic walls. The two phases occupy volumes VA 
and VB and are separated by a phase boundary. Keeping in mind the example 
of ice and water, there may be heat and particle flow across the boundary, and 
the boundary moves as ice melts or water freezes. Phase A has NA particles, 
volume VA, internal energy UA and pressure PA, with similar quantities NB, VB, 
UB, and PB defined for phase B. These quantities are subject to conservation 
conditions:

	 N N NA B total number of particles+ = ( ) 	 (11.17)

	 V V VA B total volume+ = ( ) 	 (11.18)

	 U U UA B total internal energy+ = ( ) 	 (11.19)

By the first law, U is fixed because the chamber has adiabatic walls. At equi-
librium, the entropy for the thermally isolated combined system of the two 
phases is a maximum:

	

S S U V N U V N

S U V N S U V N

 

a maximum

A A A B B B

A A A A B B B B

=
= +
=

( , , , , , )

( , , ) ( , , )

	

In an infinitesimal departure from the equilibrium state in which all the quan-
tities Ui, Vi, and Ni change by infinitesimal amounts from their equilibrium 
values,

	 dS dS dS= + =A B 0 	 (11.20)

Phase boundary

NA VA
UA PA TA

NB VB
UB PB TB

Rigid adiabatic wall
BA

Figure 11-2  Chamber containing two phases of the same substance. There can be par-
ticle exchange and heat flow across the boundary. The diathermal boundary can move 
freely, so the two volumes are not fixed.
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Applying Equation 11.1 to the two phases A and B,

	
dS

T
dU P dV dNA

A
A A A A A= + −1

( )µ
	

(11.21)

	
dS

T
dU P dV dNB

B
B B B B B= + −1

( )µ
	

(11.22)

With these explicit values for dSA and dSB, Equation 11.20 becomes

	

1 1
0

T
dU P dV dN

T
dU P dV dN

A
A A A A A

B
B B B B B( ) ( )+ − + + − =µ µ

	

This expression can be simplified using the conservation conditions, from 
which dVA = −dVB, dUA = −dUB, and dNA = −dNB. Therefore

	

1 1
0

T T
dU

P
T

P
T

dV
T T

dN
A B

A
A

A

B

B
A

A

A

B

B
A−





+ −





− −





=µ µ

	
(11.23)

This must be true for any dUA, dVA, and dNA. Therefore, Equation 11.23 is valid 
only if each of the factors in parentheses is identically equal to zero. Thus:

TA = TB (the condition for thermal equilibrium)
PA = PB (the condition for mechanical equilibrium), and
μA = μB (the condition for equilibrium against particle exchange)

This leads to a general conclusion:

Just as heat flows from regions of high to low temperatures, particles flow from 
regions of high to low chemical potential. The following example explains 
why this is so. Suppose there is a state very close to the final equilibrium state 
but with a small positive excess δNA of particles in volume A over the equi-
librium value NA. There will be a corresponding particle deficit equal to −δNA 

If two phases or systems are in thermal and mechanical equilibrium, 
then they will also be in equilibrium against particle flow, and there-
fore the two phases or systems are in complete equilibrium if the 
chemical potentials are equal.
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in  volume  B. The entropy change in returning to the equilibrium state of 
maximum entropy must be slightly positive and is given by the sum of the last 
terms on the right of Equations 11.21 and 11.22. Therefore

	
δ µ µS

dN
T

dN
T

= − 



 − 



 >A

A
B

B 0
	

Note that the change in the population of A in returning to the equilibrium 
state is −δNA and that of B is +δNA. This is done with no change in the tempera-
ture. Hence

	
δ µ δ µ δ

S
N
T

N
T

= − −



 − +



 >A

A
B

A 0
	

(11.24)

or

	 ( )µ µ δA B A− >N 0 	 (11.25)

Because δNA is positive, Equation 11.25 shows that μA > μB, which means that 
the particle flow is from the region of high chemical potential to the region of 
low chemical potential.

The condition that chemical potentials of phases A and B are equal in equi-
librium is related to the condition that the Gibbs functions per unit mass are 
equal in equilibrium at fixed T and P (Equation 10.3). This means that the 
Gibbs functions per molecule are also equal for the two phases, since they are 
composed of identical molecules. Further, because each phase is composed of 
only a single type of molecule or particle type, it follows from Equation 11.11 
that the Gibbs function per molecule is actually the chemical potential for each 
phase. Thus, for change of phase, the equality of the specific Gibbs functions 
is equivalent to an equality of the chemical potentials for equilibrium against 
particle flow. This should not be surprising, because both results were derived 
from the same idea: the principle of increasing entropy.

The discussion in this section has involved the important case in which the 
boundary between the two systems is allowed to move. The simpler problem 
of the equilibrium conditions for two systems separated by a fixed permeable 
diathermal wall is left as Problem 11.2. Not surprisingly, the result is again 
equality of the chemical potentials.
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11.2 � THREE APPLICATIONS OF 
THE CHEMICAL POTENTIAL

The flow of matter from one system to another occurs so frequently in nature 
that the concept of chemical potential has applications in many fields. In 
this section, applications from the fields of biology, solid state physics, and 
chemistry are presented.

11.2.1  Osmotic pressure

As a logical extension of the presentation in Section 11.1, it is natural 
to  consider  what happens when there are two or more different particle 
types. As an example, Figure 11-3 shows regions A and B separated by a rigid, 
diathermal wall that can sustain a pressure difference. Initially, let A contain 
a gas consisting of particles of type 1 only, and B a gas of particles of type 2 
only (Figure 11-3a). Let the wall be permeable to gas 1 only. Such a wall, called 
a semipermeable membrane, does occur in nature, particularly in biological 
systems. Such a membrane functions because it contains holes small enough 
to let through only particles smaller than a certain size. Although biological 
membranes are not strictly rigid, they may be modeled as rigid because they 
can sustain a pressure difference after an initial deformation.

After particles of gas 1 pass from A through the semipermeable membrane to 
B, the equilibrium state has a mixture of gases in B but only type 1 in A, as 

Rigid adiabatic wall
(a) (b)

1 1 1 and 2

PA PB
1

 + PB
2

2

B BA

Rigid diathermal wall
permeable to particles 1

A

Figure 11-3  Semipermeable membrane separating the two regions A and B of the cham-
ber is permeable to particles 1 only. This sets up an osmotic pressure across the membrane.
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shown in Figure 11-3b. The presence of additional particles of type 1 on the B 
side results in pressure PB

1 on that side. The particles of type 2 remain on the 
B side and create pressure PB

2, so the net pressure on that side is P P PB B B= +1 2. It 
is straightforward to show that PB > PA. First, note that the chemical potentials 
for particles of type 1 are equal on the two sides in equilibrium. That is, µ µA B

1 1=  
(see Problem 11.4). Now suppose that there is no interaction between parti-
cles of type 1 and type 2 in B. Given this assumption, the behavior of particle 
type 1 in B is the same as if the type 2 particles were absent. The equality of 
chemical potentials µ µA B

1 1=  means that the particles of type 1 exert the same 
pressure on both sides, provided they exist in the same phase (see Problem 
11.3). In other words, P PA B

1 1= . This completes the proof that P P P PB B B A= + >1 2 . 
It  is this pressure difference that is known as osmotic pressure. Osmosis is of 
vital importance in the functioning of living organisms. In a cell, the osmotic 
pressure is balanced  by the stresses in the cell wall. See for example the 
biophysics textbook by Cotterill (2003).

Although this discussion was framed in terms of gases, species 1 and 2 may 
be in the liquid state in biological systems, or as is usually the case, a solute 
dissolved in the liquid acting as a solvent. This affects the assumption that 
particles 1 and 2 are noninteracting. For liquids this assumption is not valid, 
but it acts as a first approximation. Correction terms must be added to the 
osmotic pressure to account for the interactions.

11.2.2  The Fermi level

In the free electron theory of metals, electrons are treated as a gas of particles that 
obey quantum statistics. (See Chapter 13 for an introduction to quantum statis-
tics.) Electrons are fermions, and according to the Pauli exclusion principle no 
two fermions may occupy the same quantum state. As a consequence, at abso-
lute zero the electrons fill the lowest available quantum states up to a maximum 
energy called the Fermi energy. At higher temperatures this maximum energy 
often differs only very slightly from the Fermi energy. Any additional electron 
added to the metal has to be added at or minimally above the Fermi level, because 
all the lower energy levels are already occupied. This is represented schemati-
cally in the energy level diagram given in Figure 11-4. The work function εw is the 
energy required to liberate an electron from the metal at the Fermi level.

According to Equation 11.2, the chemical potential μ is the increase in the 
internal energy upon the addition of one particle, under conditions of constant 
entropy and volume. These conditions mean that the system is isolated from 
the surroundings apart from the reversible addition of the particle. Constant 
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volume V implies that no work is done on the system, and the constant entropy 
S implies that no heat is added. When an electron is added to the metal, it 
enters at the Fermi level, and so the energy of the metal is then increased by εF. 
Therefore, μ can be identified with εF.

Now consider two different metals in contact. Each one has its own Fermi 
energy and work function. When they are put in contact so that there can 
be electron flow between them, the chemical potentials must be equal at 
equilibrium. This means that the Fermi levels are the same, and the energy 
level diagram is as shown in Figure 11-5. It can be seen from this that there will 
be a contact potential difference between them equal to ( )ε εW W2 1 /− e  where e 
is the electron charge. This idea can be extended to semiconductors and is of 
fundamental importance in the operation of junction diodes, because the size 
of the contact potential affects the diode’s operation.

Energy

εW
εF

0

Figure 11-4  Schematic representation of the energy levels of the electrons in a metal.

Energy

Metals in contact

εF1
εF2

εW1
εW2

Metal 1
Metal 2

Potential difference =
(εW2

– εW1
)/e

Figure 11-5  Physical origin of the contact potential. When two metals are put into 
electrical contact, their chemical potentials are equal at equilibrium. This means 
that their Fermi levels are the same, as indicated on the figure. The contact potential 
difference is equal to the difference in the work functions ( )ε εW W2 1−  divided by the 
electron charge.
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11.2.3  The condition for chemical equilibrium

The chemical potential is aptly named because of its particular importance in 
chemistry. As just one example of its use there, it is possible to derive a general 
condition for chemical equilibrium in a reaction.

For example, consider the common chemical reaction H2 + Cl2 → 2HCl, which 
can be written as a mathematical equation

	 2HCl H Cl2 2− − = 0 	 (11.26)

A general way of writing such a reaction is

	

v Ai i

i
∑ = 0

	
(11.27)

where the Ai denote chemical symbols and the so-called stoichiometric coef-
ficients vi are either positive or negative small integers. Assuming that the 
reaction proceeds in a given direction, then vi is positive if its molecule is 
formed in the reaction and is negative if one disappears as a reactant, as in the 
example above. In the formation of HCl, v vH Cl2 2

1= = −  and vHCl = 2.

Let Ni be the number of molecules of type i involved in the reaction. 
The numbers Ni will change as the reaction proceeds, but they cannot change 
independently of each other. The numbers can change only in a way which 
is consistent with the equation denoting the chemical reaction, because the 
numbers of the different types of atoms are conserved. For each molecule of 
H2 and each molecule of Cl2 that disappear upon reaction, two new molecules 
of HCl appear. The change in the number Ni must therefore be proportional to 
the stoichiometric coefficients appearing in Equation 11.27 for the chemical 
reaction. Therefore

	 dN vi i= λ 	 (11.28)

where the constant λ is the same for all the different types of molecules 
involved in the reaction. In this example,

	 dN dN dNHCl H Cl2 2: : : := − −2 1 1 	

If a reaction is open to the surrounding atmosphere where the pressure and 
temperature are fixed, we know from our discussion in Section 7.5 that G will 
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be a minimum at equilibrium (Equation 7.45). In any infinitesimal process at 
equilibrium dG = 0, and so Equation 11.16 gives

	

dG dNi i

i

= =∑µ 0

	
(11.29)

Using Equation 11.28, this becomes

	

µi i

i

v =∑ 0

	
(11.30)

This is the general condition for chemical equilibrium in a reaction. It says that 
chemical potentials are additive, weighted by their stoichiometric coefficients. 
For example, in the reaction for the formation of HCl, Equation 11.30 gives

	 2 02 2µ µ µHCl Cl H− − = 	

or

	
µ µ µHCl Cl H= +1

2 2 2( )
	

which is a useful result.

PROBLEMS

	 11.1	D erive Equation 11.3. [Hint: Express U = U(S, V,  N1, N2 …) and use this 
to find an expression for dU.]

	 11.2	 Consider two systems, A and B, each composed of the same single 
particle type. The two systems are contained in a chamber surrounded 
by rigid adiabatic walls and are separated from each other within 
the chamber by a rigid diathermal wall that is also permeable to the 
particles (Figure 11-6). Show, using an argument similar to the one 
used in Section 11.1.4, that the condition for equilibrium against 
particle exchange is the equality of the chemical potentials.

	 11.3	 Consider the system of Problem 11.2. Suppose that the two systems 
are composed of the same single type of particle and are both in the 
same phase, for example a gas on each side of the separating wall. 
Show that the pressures are equal. Would the pressures be equal if 
different phases existed on either side of the wall? [Hint: For a system 
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consisting of a single type of particle, μ = G(T, P, N)/N = ϕ (T, P). If the 
phases are the same on either side of the wall, the function ϕ must also 
be the same on either side.]

	 11.4	 Consider the system of Problem 11.2, but now suppose there is 
a mixture of gases on either side of the separating wall that is 
permeable to all the different gases i. Argue that µ µA B

i i=  for all the 
different gases i. [Hint: Place another diathermal wall, permeable 
to only one gas, in front of the separating wall and proceed as in 
Section 11.1.4.]

	 11.5	 Show that the chemical potential of an ideal gas at temperature 
T varies with pressure as

	
µ µ= 





+k T
P
P

B ln
0

0

	

		  where μ0 is the value at reference point of pressure P0 and temperature 
T. The gas consists of a single type of particle only. This expression is of 
great use in chemistry. [Hint: V = (∂G/∂P)T,N.]

	 11.6	 Show that the chemical potential of an ideal monatomic gas of 
N particles is

	
µ = − − 



 −5

2
3
2

0k T k T T k T
N V

N
S T
N

B B B
A

A

ln ln
	

		  Hints:
	 i.	 Use Equation 5.13 for S
	 ii.	 F = U − TS and μ = (∂F/∂N)T,V or G = U + PV − TS and μ = G/N
	 iii.	 U = 3NkBT/2
	 iv.	 CV = 3NkB/2

Rigid adiabatic wall

Diathermal rigid permeable wall

A B

Figure 11-6 
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		N  ote: The NA used here in this question is Avogadro’s number and 
should not be confused with the notation NA used in Section 11.1.4 to 
denote the number of particles in a box A.

	 11.7	E xplain why Equation 11.11 does not contain an additional term 
involving the partial derivative of ϕ with respect to N, as appears in 
Equation 11.13.

	 11.8	P rove that the chemical potential μ for a single particle type is not 
simply given by F/N, although it is equal to G/N.

	 11.9	 Helium gas at T = 298 K and P = 1 atm has chemical poten-
tial −0.32 eV. (a) Explain the significance of the negative sign. 
(b) How much pressure would need to be applied (at constant T) for 
the chemical potential to be exactly zero? [Hint: Use the result of 
either Problem 11.5 or Problem 11.6.]

	 11.10	 Ammonia NH3 is formed by combining nitrogen N2 and hydro-
gen H2. Find the chemical potential for ammonia as a function of 
the chemical potentials of the two reactants.

	 11.11	 The Sackur–Tetrode equation (similar to Equation 5.11) gives the 
entropy of an ideal gas as

	

S Nk
V
N

mU
Nh

= 



 +
























B ln

/
4
3

5
22

3 2π

	

		  where h is Planck’s constant. (a) Show that the chemical potential can 
be written in terms of entropy as

	
µ = − ∂

∂
T

S
N U V, 	

		  (b) Use the result of part (a) along with the fact that U = (3/2)NkBT 
for a monatomic gas to find an expression for the chemical potential 
as a function of V, N, and T. (c) Evaluate the result in (b) numerically 
for helium gas at T = 298 K and P = 1 atm. (d) Discuss the implications 
of the fact that your answer in (c) is negative.

REFERENCE

Cotterill, R., Biophysics: An Introduction, Wiley, West Sussex, England, 2003.



283

Chapter 12: The Third Law 
of Thermodynamics

The third law of thermodynamics is often stated as: The entropy of a system must 
approach zero in the limit of zero temperature. This statement may sound simple, 
even obvious, but there are several alternative ways to think of the third law, and 
as a result, some interesting consequences emerge after deeper investigation.

12.1  STATEMENTS OF THE THIRD LAW

12.1.1  The Nernst heat theorem

The third law of thermodynamics is concerned with the entropy of a system 
as the temperature is reduced toward absolute zero. Integrating Equation 5.4 
from absolute zero to temperature T,

	

S
Q
T

S

T

= +∫ C

0

0

	

(12.1)

In this case S0, the entropy at absolute zero, cannot be determined from the sec-
ond law. This is where the third law becomes meaningful, providing a value for S0.

The original statement of the third law was given by Walther Nernst in 1906. 
Nernst noticed that, in many chemical reactions occurring with no change 
in the end point temperatures, the value of ΔG decreased while that of ΔH 
increased. Nernst postulated as his heat theorem that not only do these two 
quantities become equal at T = 0, but they also approach each other asymp-
totically, as shown in Figure 12-1.

Consider what this means in terms of entropy. It follows from Equation 7.37 that

	 ∆ ∆ ∆G H T S= − 	 (12.2)
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for a chemical reaction at temperature T, and this clearly shows that ΔG → ΔH 
as T → 0. However, in order for the curves to touch each other asymptotically as 
in Figure 12-1, it can be shown that ΔS itself must vanish as T → 0. These ideas 
are embodied in the following statement of the Nernst heat theorem, which is 
more general than the one originally given by Nernst:

The external parameters may be, for example, the pressure, temperature, or 
magnetic field. Ever since its formulation, there has been a great deal of dis-
cussion about the significance of the Nernst heat theorem. There is now a great 
deal of experimental evidence in its support, and so it has assumed the status 
of a fundamental law—the third law of thermodynamics.

12.1.2  Planck formulation of the third law

The original Nernst formulation of the third law has subsequently been fol-
lowed by various other statements that are more in accord with an understand-
ing of modern quantum statistical mechanics. A particularly useful statement 
of the third law was given by Planck in 1911. It is a more powerful statement 
than the earlier statement of Nernst and is

The entropy change in a process that occurs between a pair of equilib-
rium states, associated with a change in an external parameter, tends 
to zero as the temperature approaches absolute zero.

Energy

ΔG

ΔH

T

TΔS

Figure 12-1  Nernst postulated that the curves for ΔH and ΔG in a chemical reaction 
approach each other asymptotically as T → 0.
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A perfect crystal is one in which the arrangement of the atoms repeats itself 
on a regular basis throughout the crystal, with no imperfections. In a glass or 
amorphous material, on the other hand, there is no such regular repetition 
and no long-range order. The essential point in the Planck statement is that 
the entropies of perfect crystals are equal at T = 0; it is then a matter of conve-
nience to put S0 = 0. This is a sensible choice, because it gives agreement with 
the microscopic view to be discussed in Section 12.1.4. Although the Planck 
statement is usually quoted for perfect crystals for historical reasons, it is now 
believed to hold for all systems that are in equilibrium states, including liquids 
(e.g., 3He and 4He) and gases.

In this context, it is important to understand what is meant by an equilibrium 
state, from an energy point of view. It will also be important to consider the dif-
ference between stable and metastable equilibrium. Under given conditions, a 
system in equilibrium is in a state corresponding to a minimum in the appro-
priate potential function. For example, a complex system at constant P and T 
takes a minimum value of G at equilibrium when another macroscopic variable, 
such as the volume, is varied. Such a state is one of stable equilibrium because 
any departure from this state entails an increase in G. On the other hand, if G 
increases for small departures only from the equilibrium state before decreas-
ing again for larger departures, then the state is one of metastable equilibrium.

12.1.3  Experimental test of the third law

The ideas presented in Section 12.1.2 allow a laboratory test of the validity of 
the third law. Many substances exist in different allotropic forms. Here are two 
examples:

The entropy of all perfect crystals is the same at absolute zero, and 
may be taken as zero.

It might seem surprising that one can consider a gas existing at abso-
lute zero. However, there are certain quantum systems, such as the elec-
trons in a metal (Section 13.3), which do constitute a gas-like assembly 
even down to T = 0. Also, extremely dilute gases such as those in a Bose–
Einstein (BE) condensate (Section 13.4) exist at nanokelvin temperatures.
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	 1.	P ure tin exists in two forms, called gray and white tin. Above 286 K, the 
stable form is white tin (also called β-tin), which is metallic with a tetrag-
onal crystal structure. Below that temperature, the stable form is gray tin 
(also called α-tin), which is powdery and has a face-centered diamond-
cubic structure.

	 2.	S ulfur has many allotropes, but at atmospheric pressure, the common 
ones are monoclinic and rhombohedral sulfur. Above 368 K, the stable 
form is monoclinic (β-sulfur), while below this temperature, the stable 
form is rhombohedral (α-sulfur).

Consider now one such substance that can exist in two allotropic ordered 
forms. At a given temperature, each form can exist in an equilibrium state 
with a minimum in energy, although the more stable form will have the lower 
energy minimum. The form with the higher energy minimum is in metastable 
equilibrium. If sufficient energy is given to the system in this metastable equi-
librium state, so that the potential barrier between the states can be overcome, 
the system will change to the lower energy state of stable equilibrium. This 
is analogous to a ball being kicked out of a small depression in a hillside so 
that it rolls down to the bottom of a hill. At high temperatures, where kBT is 
larger than or comparable to the height of the potential barrier, there is suf-
ficient random thermal vibrational energy to induce such a change; thus a sys-
tem initially in the metastable state will change gradually into the stable state. 
The metastable state at high temperatures is not in a true equilibrium state, 
because the state changes with time. However, at low temperatures, and cer-
tainly at absolute zero, the situation is different. Now, such a metastable state 
is in a true equilibrium state, because there is insufficient thermal energy to 
induce a change. As a result, the Planck form of the third law may be applied to 
the system in either the stable or the metastable equilibrium states.

As a specific application of these ideas, consider the allotropes of sulfur 
described above. If monoclinic sulfur is cooled rapidly through 368 K to a very 
low temperature, the monoclinic phase is locked in, with the transition rate 
to the more stable rhombohedral form becoming negligible. Thus, at low tem-
peratures both forms of sulfur can be produced in stable equilibrium states, 
with S0 being the same for both forms. If the Planck statement of the third law 
holds, then the entropy must vary for the two forms as in Figure 12-2, with a 
common value of S0. The entropy change SB − S0 in monoclinic sulfur between 
0 and 368 K is given by the two expressions

There are two other allotropes of tin, called γ- and σ-tin, but these exist 
only at high temperatures and pressures greater than 104 atm.
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where L is the latent heat for the transition (Section 3.3.4). Now, the heat 
capacities for each of the two forms can be measured from close to absolute 
zero up to 368 K. Also, L can be measured, and so the two values for SB − S0 
can be determined. Typical experimental values are SB − S0 = 37.82 ± 0.40 and 
37.95 ± 0.20 kJ/(K · mol). Because these values are the same within the experi-
mental error, the assumption that S0 is the same for each form of sulfur is valid. 
This is also found for other different allotropes, which supports the Planck 
statement of the third law.

Although there are some systems that appear to violate the third law, in that they 
have nonzero entropy at absolute zero, there is in fact never any violation because 
such systems are not in true equilibrium states. The most important examples of 
such systems are glasses, which are discussed at the end of Section 12.1.5.

368 K

First order phase transition
with latent heat L

Monoclinic
B

A

0

T

S

S0

SA

SB Rhombohedral

Figure 12-2  The entropies of monoclinic and rhombohedral sulfur as a function of tem-
perature. The curves may be obtained from a measurement of the temperature depen-
dence of the heat capacity for each phase. Based on these experimental measurements, 
together with a measurement of the latent heat for the first-order phase transition at 368 K, 
the entropy curves must meet each other at T = 0. This is consistent with the third law.
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12.1.4  Microscopic view of the third law

It is useful to understand the origins of the third law from a microscopic view-
point. According to quantum mechanics, the small particles comprising the 
system can exist in different quantum states with discrete energies, such as 
those shown in Figure 6-9. As the temperature is lowered, the particles pack 
into the lowest energy levels until, at absolute zero, they are all in the ground 
state (assuming that they are bosons). Now, assume that the ground state is 
nondegenerate, with g = 1. This assumption is not universally true, but it sim-
plifies the argument. With these assumptions, the number of different ways in 
which all the particles can be arranged in the ground state is Ω = 1. An appli-
cation of

	 S k= B lnΩ 	 (6.3)

shows that S0 = 0 at absolute zero, which is the Planck statement of the third 
law. This of course also implies that ΔS = 0 for any process occurring at abso-
lute zero, which is precisely the Nernst heat theorem.

This argument for the approach of entropy to zero at absolute zero hinged on 
the discreteness of the energy levels, as well as on the nondegeneracy of the 
ground state. However, for the macroscopic systems of concern in thermody-
namics, these levels are very closely spaced. At temperatures of a few degrees 
K, where the measured decrease in S from the room temperature value is quite 
marked, there are so many states that may be occupied that one cannot say 
the system is in one lowest energy state with Ω = 1. The explanation is that the 
decrease in entropy toward zero depends on the behavior of the number of 
states per unit energy range (called the density of states) with energy, rather 
than just on the occupancy of the ground level, as this simplified theory sug-
gested. In particular, it is the behavior of the density of states at low energies 
that determines the low temperature properties, so the entropy certainly does 
fall to zero as T tends to 0 for both bosons and fermions. The density of states 
functions for bosons and fermions will be described in Chapter 13.

12.1.5  Simon formulation of the third law

Consider cooling a perfect crystal (described in Section 12.1.2) toward abso-
lute zero. As the crystal is cooled, lattice vibrations decrease and a state of per-
fect order is approached, with the atoms all settling in their lattice positions 
and S tending toward zero. However, the electrons in the atoms can have a 
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net electron magnetic moment due to spin. If the temperature is merely very 
low but not zero, the electron magnetic moments can have different energies 
according to whether the spins point along or against an applied magnetic field. 
There will thus be some entropy remaining, due to the different orientations of 
the electron spins, when all the lattice vibrational entropy has disappeared.

Now, cool the crystal even more, so that the electron spins all go into the same 
ground state, aligned with the magnetic field. This is the most ordered arrange-
ment, with zero spin entropy. Is the system’s entropy equal to zero? The answer 
is almost certainly no, because one must now consider the weak nuclear spin 
magnetic moments, which again can be distributed among a set of very closely 
spaced energy levels. The temperature must be reduced even further to remove 
this nuclear spin entropy. Of course, this argument could be pursued even fur-
ther by considering other contributions to the entropy due to the arrangements 
of individual nucleons within each nucleus. In the second statement of the 
third law (Section 12.1.2), these hidden entropies were disregarded by stipulat-
ing a perfect (and by implication simple) crystal in which there are no electron 
or nuclear spins, only atomic size masses in a regular arrangement.

The important point is that the lattice, the electron spin system, and the 
nuclear spin system are essentially uncoupled from each other at low enough 
temperatures. Then, they act as independent systems, each in internal thermo-
dynamic equilibrium. For such uncoupled systems, the entropies are additive. 
Simon called these independent systems aspects of the whole system and gave 
the following general statement of the third law in 1937:

The Simon statement is convenient, because it means that attention can be 
focused on just one aspect of interest, with the knowledge that its entropy is 
zero at T = 0.

Finally, consider what happens in glasses, which have no crystal structure 
whatsoever. Many liquids, which by nature have high entropy, retain their liq-
uid structure if they are cooled rapidly through their freezing point to form a 
glass, with frozen-in entropy at absolute zero. In contrast, if they are cooled 
slowly, they first go into an ordered crystal phase, with zero entropy at absolute 
zero. The crystal phase is the stable phase, with a minimum in energy, while 
the glass is an unstable phase, not at an energy minimum. The glass will slowly 
crystallize, although the time period for this may be years or even considerably 

The contribution to the entropy of a system from each aspect that is 
in internal thermodynamic equilibrium disappears at absolute zero.
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longer. The glass phase is thus not an equilibrium state. Glycerol, with a melt-
ing point at 18°C, is a good example of such a material. Although the frozen-in 
entropy persists down to absolute zero, this in no way violates the third law, 
which relates only to systems in equilibrium.

12.2  CONSEQUENCES OF THE THIRD LAW

It is a consequence of the third law that not only entropy but also several other 
measurable parameters vanish at absolute zero.

12.2.1  Thermal expansion coefficient

The thermal expansion coefficient β is defined as

	
β = ∂

∂
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(2.2)

This can be transformed by the Maxwell relation
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to

	
β = − ∂
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(12.3)

However, the Nernst formulation of the third law says that the entropy change 
in an isothermal process tends to zero at absolute zero, so the partial deriva-
tive in Equation 12.3 is zero. Therefore, the thermal expansion coefficient is 
zero at absolute zero.

The practical effect of this is that very small changes in temperature near abso-
lute zero result in negligible thermal expansion. Considering the discussion 
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in Section 12.1.5, it is likely that a small amount of thermal energy will go into 
other forms of energy, rather than expanding the crystal lattice.

12.2.2 � Temperature dependence of the magnetic 
moment in a magnetic system

In Section 9.1.4, it was suggested how to derive a Maxwell relation for magnetic 
systems
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(12.4)

As was the case for thermal expansion in the preceding section, the left side 
of Equation 12.4 vanishes in the limit as T approaches zero, by the Nernst for-
mulation of the third law. Hence, ( )∂ ∂ =M/ T B0 0 at absolute zero, which means 
that there is no temperature dependence of the magnetic moment at T = 0. This 
immediately suggests that the Curie law cannot hold down to absolute zero, as 
the following argument shows.

Suppose the Curie law is obeyed as
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(12.5)

where the magnetic susceptibility follows from Equation 9.5. Differentiating,
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Clearly, the temperature dependence of the magnetic moment does not vanish 
as T → 0. Therefore, the conclusion is that the Curie law breaks down at very 
low temperatures.

The physical reason for the breakdown of Curie’s law in a magnetic system is 
that there is always an interaction between the elementary magnetic dipoles, 
whereas the Curie theory of paramagnetism assumes only interaction with 
the external field. In a magnetic salt, this interaction is usually very weak and 
is negligible compared with the thermal energy kBT at normal or even fairly 



292    Chapter 12: The Third Law of Thermodynamics

low temperatures; as a result, Curie’s law holds. At very low temperatures, 
the interaction between dipoles becomes important, so the salt departs from 
Curie’s law. In that case, some sort of magnetic ordering occurs, and the salt 
can become ferro- or antiferromagnetic. The magnetic moment then does not 
change with temperature at T = 0, as was deduced from Equation 12.4.

12.2.3  Heat capacity

Next, consider the constant-volume heat capacity CV. It is related to entropy 
and temperature by
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As T → 0, ΔS → 0 by the Nernst statement of the third law. But Δ(ln T) is certainly 
nonzero as T → 0, because ln T → −∞ there. Hence, heat capacity CV should 
tend to zero as T → 0. A similar argument holds for the other heat capacities.

This is always observed experimentally. For example, the heat capacity of most 
metals at low temperatures is found to obey the law

	 C aT bTP = + 3
	 (12.8)

(where a and b are constants for a particular material) down to the very lowest 
temperatures attainable. The first term is due to the conduction electrons, and 
the second is the contribution from the lattice. This heat capacity vanishes at 
T = 0, in agreement with the third law.

There is a more instructive argument for the vanishing heat capacities at abso-
lute zero. From Equation 7.9, the entropy change from absolute zero to tem-
perature T is
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(12.9)
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The left side of this equation must remain finite at all temperatures down to 
absolute zero, where it vanishes by the third law. Therefore, the right side of 
Equation 12.9 must also remain finite. This means that CV must fall to zero as 
T→0, at least as fast as T; otherwise, the right side would diverge there. Equation 
12.8 is consistent with this idea.

12.2.4 � Slope of the phase boundary 
in a first-order transition

The slope of the phase boundary in a first-order transition is given by the 
Clausius–Clapeyron equation

	

dP
dT

S
V

= ∆
∆ 	

(10.8)

As T → 0, ΔS tends to zero by the Nernst statement of the third law. Therefore, 
the slope of a phase boundary in a first-order transition is zero at absolute zero. 
This is shown in Figures 10-13 and 10-14, the phase diagrams for 4He and 3He.

Another application of this idea is in superconductors. It can be shown in exactly 
the same way that the phase boundary between the normal and the supercon-
ducting phases has zero slope at T = 0. This is illustrated in Figure 10-11.

12.3 � THE UNATTAINABILITY OF 
ABSOLUTE ZERO

There is yet another statement of the third law:

Based on all the examples in Section 12.2, the fact that all the pre-
dictions based on the third law are in agreement with experimental 
observations may be taken as the experimental confirmation of the 
third law.

It is impossible to reach absolute zero using a finite number of 
processes.
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Although there are formal proofs to show that this statement of the third law 
is equivalent to the Nernst statement (see, e.g., the text by Zemansky, 2013), we 
shall resort to a physical argument to show that the two statements are consis-
tent with each other.

The lowest temperatures attainable experimentally in bulk materials are 
achieved using the technique of adiabatic demagnetization (Section 9.2). One 
might logically propose to perform a series of successive demagnetizations in 
an attempt to reach absolute zero, as illustrated in Figure 12-3.

Infinite number
of steps

(a)

B0 > 0

B0 = 0

T

S

(b)

B0 > 0

B0 = 0

T

S

Figure 12-3  It is impossible to reach absolute zero in a finite number of steps. The process 
illustrated here is for the adiabatic demagnetization of a paramagnetic salt. (a) If the third 
law is true, the approach toward absolute zero is gradual but is never quite achieved. (b) If 
a third law were untrue, absolute zero could be reached after a finite number of steps.
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Figure 12-3 shows two entropy curves for a magnetic salt. One curve rep-
resents a finite magnetic field B0, and the other shows the entropy for zero 
applied field. As the elementary dipoles are aligned by the field, they are in 
a state of greater order than when they are unaligned in the absence of the 
external field. Thus, the entropy curve for the state in the applied field is the 
lower one. At absolute zero, by the Nernst statement of the third law, the dif-
ference in entropy between the two curves is zero, and this is shown in Figure 
12-3a. In contrast, Figure 12-3b shows the two entropy curves in a way that 
violates the third law.

Now, consider the series of isothermal magnetizations and adiabatic demag-
netizations represented by the zigzag paths in Figure 12-3. Each successive 
demagnetization reduces the temperature. If the entropy curves were as in 
Figure 12-3b, then absolute zero could be reached in a finite number of opera-
tions. However, the actual entropy curves are as in Figure 12-3a, and it is clear 
that absolute zero cannot be obtained in a finite number of demagnetizations. 
Therefore, it is impossible to reach absolute zero in any practical way.

Despite the unattainability of absolute zero, much progress has been made 
in recent years in reaching extremely low temperatures. In Section 10.5.2, 
the discovery of the superfluid phases of 3He was described, at the extremely 
low temperatures of a few millikelvin. Since then, laboratories have routinely 
achieved lattice temperatures of a few microkelvin, while the nuclei of cop-
per have been cooled to a few nanokelvin. At these temperatures, they form a 
nuclear antiferromagnet. The BE condensates (BECs) described in Section 13.4 
also occur at nanokelvin temperatures, with the aid of laser cooling of atomic 
gases. Absolute zero will always be unattainable, but a wealth of fascinating 
physics remains to be discovered as laboratory techniques improve, allowing 
us to approach ever closer to this elusive end.

PROBLEMS

	 12.1	D iscuss the behavior of the compressibility (defined in Equation 2.3) in 
the limit as the temperature approaches absolute zero. Does compress-
ibility, like heat capacity and thermal expansion coefficient, approach 
zero in this limit? Explain.

	 12.2	 Consider a mole of conduction electrons in copper, initially at abso-
lute zero. Use the following process to estimate the temperature asso-
ciated with promoting a single electron from the ground state to the 
first excited state. (a) Assume a single electron is promoted, and that 
the energy required is Δε. This implies that g(ε)Δε = 1, where g(ε) is the 
density of states function (Equation 13.45). FD statistics require that 
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the promoted electron originally have energy εF, the Fermi energy. 
Show that

	
∆ε ε= 2

3
F

N 	

		  where N is the number of electrons. (b) Use the Boltzmann factor from 
Chapter 6 to argue that the probability of an electron being in the first 
excited state, relative to the ground state, is

	 e k T−∆ε/ B
	

		  (c) If the probability in (b) is small, show that the temperature must be 
given by the inequality

	
T

Nk
< 2

3
εF

B 	

		  (d) Evaluate the result in (c) for one mole of conduction electrons, with 
εF = 7.0 eV. Discuss the implications for the third law.

	 12.3	 Explain how the process in Problem 12.2 would differ for a condensed 
boson gas. Would the maximum temperature be higher or lower for 
bosons than for fermions?

	 12.4	 Using the kinetic theory of gases, the molar heat capacity of a mona-
tomic ideal gas is cV = 3/2 R (Section 3.4.3). Use the third law to discuss 
the suitability of kinetic theory in the limit of low temperatures.
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Chapter 13: Quantum Statistics

In Chapter 6, statistical principles were applied to collections of atoms or 
molecules in order to understand the thermodynamic behavior of larger 
systems. That approach was particularly useful for the study of gases, in 
which the behavior of individual particles can be understood with classical 
principles. There are many other systems, however, in which the quantum 
behavior of particles must be considered, and this requires the development 
of new statistical distributions appropriate for different kinds of particles. 
This leads to some unusual and fascinating phenomena, some of which were 
observed only recently.

13.1  CLASSICAL AND QUANTUM STATISTICS

In the classical gases studied in Chapter 6, the density of particles is so low that 
there is essentially no overlap between the particles’ quantum mechanical 
wave functions. That is why quantum mechanics can be ignored. However, 
there are systems in which the density of particles is large enough that the 
classical approximation is no longer valid. Fortunately, the basic concepts of 
statistics such as multiplicity and probability are still useful when multiple 
particles are fighting for the same space, but the statistical rules for how the 
particles fill the space must be redeveloped.

13.1.1  Bosons and fermions

In quantum mechanics, fundamental particles are described as bosons if 
they have zero or integer spin and fermions if they have half-integer spin. 
For example, leptons (such as electrons) and quarks are fermions with spin 1/2 
and photons are bosons with spin 1. Composite particles, including mesons, 
baryons, and whole atoms, are classified similarly based on their net spin. 
For  example, the common 4He atom is a boson, but the rare 3He atom is a 
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fermion. This apparently slight difference results in vastly different behavior 
in the superfluid phases of the two isotopes.

The important difference statistically is that fermions are governed by the 
Pauli exclusion principle, which says that no two fermions may occupy the 
same quantum state. A familiar example of this is the filling of ground-state 
energy levels in multielectron atoms. The lowest (in energy) electron subshell 
is the 1s subshell. Because electrons are fermions, the 1s subshell is restricted 
to two electrons, which are in different quantum states due to their opposite 
spins. A third electron cannot fit in the 1s subshell, because it would need to 
have the same spin (and same quantum state) as one of the other two. The same 
restriction holds for the 2s subshell. The 2p subshell has three different angu-
lar momentum states, so this combined with the spin degeneracy allows a total 
of six electrons in a p subshell. The other subshells fill similarly, which leads to 
the atomic properties described in the periodic table. Based on the Pauli exclu-
sion principle, we say that fermions follow Fermi–Dirac (FD) statistics .

In contrast, there is no such restriction on bosons. In principle, any number of 
bosons may be in the same quantum state. As a result, bosons will be described 
by Bose–Einstein (BE) statistics.

For classical systems, there is no need to consider whether particles are 
fermions  or bosons, because their wave functions are considered non-
overlapping. For that reason, there is no restriction on how many classical 
particles may be in the same state, except for the phase-space restriction dis-
cussed in Section 6.2.5. Therefore, classical particles are described by a third 
type of statistics, called Maxwel–Boltzmann (MB) statistics. What distin-
guishes MB from BE is that classical particles (governed by MB statistics) can 
generally be considered distinguishable from one another, whereas quantum 
particles (whether fermions or bosons) must be considered indistinguishable.

13.1.2 � Classical and quantum 
distributions: an example

A simple example will illustrate some distinctions among the three distribu-
tions: MB, BE, and FD. Suppose a system consists of two particles, which have 
two states available to them. The possible distributions of the two particles 
between the two states is shown in Figure 13-1 for MB, BE, and FD statistics. 
For MB statistics, the particles are assumed distinguishable and thus labeled 
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A and B. For the two quantum distributions, the particles are indistinguish-
able, and so both are labeled A.

Even in such a simple system, the number of configurations depends on the 
kind of statistics used. The Pauli exclusion principle imposes a strong restric-
tion on fermions, so the number of configurations is smallest for FD. The two 
fermions cannot be in the same state, and as a result, one fermion occupies 
each of the available states. Bosons are not subject to the Pauli exclusion 
principle. Therefore, as shown in Figure 13-1, the two bosons may be in differ-
ent states or the same one. Thus, there are more configurations possible for BE 
than for FD. The difference between BE and MB is due to the distinguishability 
of classical particles.

13.1.3  Gibbs factor and grand partition function

Some important tools for dealing with quantum statistics may be derived 
by taking an approach analogous to the use of the Boltzmann factor and 
partition function in Chapter 6. In Section 6.3.1, the Boltzmann factor was 

Notice that for BE statistics, it is possible (even likely) that all the particles 
may cluster in the same state. This has important implications in some 
applications of BE statistics.

MB Statistics
S1 S2
A
B

B
A

AB
AB

S1 S2

BE Statistics

A A
AA

AA

S1 S2

FD Statistics

A A

Figure 13-1  Filling two states with two particles, using MB, FD, and BE statistics. FD statis-
tics are the most restrictive, and MB statistics are the least.
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developed by considering a system attached to a reservoir, assuming that 
the system and reservoir were fixed in size (volume and particle number) but 
could exchange energy.

When dealing with quantum statistics, it will be convenient to consider 
systems in which both particles and energy can be exchanged with the res-
ervoir. The importance of this is illustrated by the example in Section 13.1.2. 
Allowing for particle exchange leads to a modification of the Boltzmann factor 
from Chapter 6. Recall that the thermodynamic identity (Equation 11.1) relates 
changes in entropy to both energy and particle number

	 dU T dS P dV dN= − + µ 	 (11.1)

where μ is the chemical potential. This suggests that the energy E in the 
Boltzmann factor should be replaced by E − μN, to take into account parti-
cle flux, if we still assume an isochoric process. This modification results in 
a modified Boltzmann factor, now called the Gibbs factor, defined as

Analogous to the partition function for classical statistics (Equation 6.11), the 
sum of all the Gibbs factors is defined as the grand partition function Z

where gi is the degeneracy of a state with energy Ei and occupancy Ni. Then, as 
in classical statistics, the probability of a state with energy Ei is

	
Gibbs factor B= − −e E N k T( )/µ

	 (13.1)
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13.1.4  FD distribution

Consider a system made up of nondegenerate quantum states that have energy 
ε when occupied by a single particle. The net energy of n particles in such a 
state is nε. The grand partition function is given by Equation 13.2 as

	

Z = =− − − −∑ ∑e en n k T n k T

n n

( )/ ( )/ε µ ε µB B

	
(13.4)

where as in Equation 11.1, µ is the chemical potential. Similarly, the probabil-
ity that a state is occupied by n particles is then given by Equation 13.3 as
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(13.5)

It is most useful to consider the mean number of particles n  for the state, 
which is the weighted average
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Now, it becomes crucial to consider which kind of statistics apply. For FD 
statistics, each state can have either zero particles or one particle (n = 0 or 
n = 1). Therefore, for a given quantum state with energy ε, the grand partition 
function contains only two terms
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The weighted average n  becomes (for fermions)
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In this context, nondegenerate means that there is only a single state 
corresponding to each energy ε.
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Simplifying,

This important result is known as the FD distribution. To understand its 
physical significance, consider the graphs shown in Figure 13-2. At T = 0, the 
graph is a step function with nFD =1 for ε < µ and nFD = 0  for ε > µ. This makes 
sense physically, because at T = 0 all the available states fill from lower energy 
to higher with one fermion per state, until every fermion is placed. When T > 0, 
thermal energy is available to promote some of the fermions to higher energies, 
and the distribution “smears” as shown.

13.1.5  BE distribution

For bosons, there is no restriction on the number of particles per state, and 
therefore, the sums in Equations 13.4 and 13.6, each have an infinite number 
of terms. Fortunately, the sums can be computed using standard mathemati-
cal techniques.

Again, we will assume single-particle states with energy ε. The grand partition 
function (Equation 13.4) for bosons in a single state of energy ε is

FD distribution

	
n

e k TFD B
= − +

1
1( )/ε µ

	
(13.7)

T > 0

nFD

1

μ ε

T = 0

Figure 13-2  FD distribution at T = 0 and T > 0. At T = 0, all the levels are filled up to 
energy µ, and at higher temperatures, the shape of the distributions smears to allow some 
occupancy above µ.
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This takes the form of a geometric series 1 + y + y2 +⋯ with well-known result
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In this context, y e k T= − −( )/ε µ B , so the result is
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The weighted average occupancy (Equation 13.6) for bosons is also an 
infinite sum
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This sum can be computed by letting u = (ε−μ)/kBT and then realizing that
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where the last step uses the grand partition function from Equation 13.8. 
But  by Equation 13.9, the grand partition function is also Z = − − −( )1 1e u . This 
can be used to find the derivative in Equation 13.11
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In terms of physical quantities, the result is
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This result, the BE distribution, plays the same role for bosons as Equation 13.7 
does for fermions. Remarkably, the forms of the two distributions differ by only 
the sign attached to the number 1 in the denominator. However, as you have 
already seen, fermions and bosons differ greatly with respect to how they occupy 
quantum states. The distinction will become clearer in Section 13.1.6.

13.1.6  MB distribution

In the classical limit—for example, the ideal gases studied in Chapter 6—the 
average occupancy of states is quite low (≪1), for either fermions or bosons. In 
that case, there will be no “competition” for space in a single state among mul-
tiple particles. This requires that the exponential term be much greater than 1 
in either distribution (Equation 13.7 or 13.12). Therefore, in this limit, both 
distributions reduce to

Two points of interpretation are worth mentioning. First, one may think of 
the MB distribution as simply the product of a constant e k Tµ/ B  and the famil-
iar Boltzmann factor e k T−ε/ B  from classical statistics. Second, the devolution of 
both quantum distributions into the classical one is consistent with Bohr’s cor-
respondence principle, which connects the quantum and classical regimes.

13.1.7  Comparison of the three distributions

The three distributions are graphed together in Figure 13-3, for the same 
chemical potential µ. Notice that the BE distribution has the highest 

MB distribution
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BE distribution
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(13.12)
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occupancy  and the FD distribution the lowest, consistent with the example 
and discussion in Section 13.1.2. The three distributions approach one another 
in the classical limit.

For scale, note that when ε = µ, the distribution laws require that nFD = 0 5.  
and nMB =1 0. , exactly. Occupancy of a state by fermions is required to be 
≤1 at any energy. In contrast, the number of bosons in a quantum state is 
unbounded.

13.2  PHOTONS AND THERMAL RADIATION

The emission of electromagnetic radiation from hot bodies is an important 
example, with numerous applications throughout physics and astrophysics. 
In this section, we first treat the general subject and then apply BE statistics to 
find some results that can be compared with experimental observations.

13.2.1  Radiation density and pressure

It is an experimental fact that all bodies emit electromagnetic radiation by 
virtue of their temperature. This thermal radiation depends in general both 

D
ist

rib
ut

io
n 

fu
nc

tio
ns

nBE

nMB
nFD

μ
ε

Figure 13-3  Comparison of the three distribution functions. At high energy, the two 
quantum distributions devolve into the classical (MB) distribution.
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on the temperature of the body and on the nature of its surface. A familiar 
example  is a common electric heating element. At high temperatures, the 
element glows red or red-orange. Set on a lower temperature, the element 
emits primarily infrared radiation, which you can easily feel even though 
there is insufficient visible radiation to see. Bodies at higher temperatures, 
such as molten steel in a furnace, appear to glow white, indicating emission 
throughout the visible spectrum.

A useful model of thermal radiation is shown in Figure 13-4. In this context, 
it is called cavity radiation, because it is entirely contained within a cavity. 
The  thermal radiation will be absorbed and re-emitted by the walls of the 
cavity until an equilibrium state is reached at temperature T, with no further 
changes occurring in the nature of the radiation. For reasons that will be made 
clear in Section 13.2.8, cavity radiation is also known as blackbody radiation.

It is possible to treat cavity radiation as a thermodynamic PVT system, such 
as those presented in Chapters 9 and 10, although at first sight it might seem 
an unlikely candidate. In this case, V and T are simply the cavity volume and 
temperature, respectively. To see how pressure arises, first recall that classical 
electromagnetism treats the radiation as electromagnetic waves. The energy 
density u of electromagnetic radiation is

	
u

B E= +
2

0

0
2

2 2µ
ε

	
(13.14)

for magnetic field B and electric field E. Therefore, the total energy 
U  associated  with the radiation is the energy density integrated over the 
entire volume of the cavity

	

U
B E

dV
V

= +




∫

2

0

0
2

2 2µ
ε

	

(13.15)

Cavity with
walls at TRadiation

Figure 13-4  Model for cavity radiation. The radiation is absorbed and reemitted from the 
walls so that it is in thermal equilibrium with the walls at temperature T.
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There is a straightforward connection between the radiation pressure and 
energy density. Consider an electromagnetic wave incident on a boundary, 
as in Figure 13-5. The Ex field of the wave induces a current density jx in the 
wall. The By field then interacts with jx to produce a force Fz on the wall in 
the z direction. This is the origin of the radiation pressure.

To obtain the relation between P and u, start with the result from kinetic 
theory (Section 3.4) that the pressure in a gas is

	
P nmv= 1

3
2

	
(13.16)

where n is the number density, m is the molecular mass and v2  is the mean square 
molecular speed. (In this context m is not a particle mass but rather the mass–
energy of the photons.) The product nm is the mass per unit volume or density ρ, so

	
P v= 1

3
2ρ

	
(13.17)

Now consider the radiation as a photon gas where the photons are all moving 
with speed c. Equation 13.17 becomes

	
P c= 1

3
2ρ

	
(13.18)

According to the Einstein mass–energy relation u = ρc2, and so

	
P u= 1

3 	
(13.19)

This simple result expresses the connection between radiation pressure 
within the cavity and energy density.

Ex jx

Fz z

Wall

By

Figure 13-5  Radiation pressure arising from a reflected electromagnetic wave.
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13.2.2  Energy density for cavity radiation

In addition to the energy density u, there are several other important 
quantities related to cavity radiation:

	 1.	 Spectral energy density uλ 
		R  adiation in general does not consist of a single wavelength but a whole 

spectrum of wavelengths. Accordingly, we define the spectral energy 
density uλ so that uλ dλ is the energy contained per unit volume between 
the wavelengths λ and λ + dλ. Clearly,

	

u u d=
∞

∫ λ λ
0 	

(13.20)

	 2.	E nergy density per unit energy uε

		  Similarly, uε is defined as the energy density within a range ε to ε + dε.
	 3.	 Spectral absorptivity of a surface αλ

		  αλ is defined as the fraction of energy incident on a surface that is 
absorbed at λ.

	 4.	 Spectral emissivity of a surface ελ

		  Spectral emissivity is defined such that ελ dλ is the energy emitted per 
unit area per second by the surface between λ and λ + dλ.

Figure 13-6 shows a box, with the walls at temperature T, in which there is 
cavity radiation. Experimentally, the radiation emitted by the exterior of the 

Do not confuse the radiation pressure in Equation 13.19 with the 
pressure exerted by light in other physical situations. For example, an 
external light beam exerts a force on a reflecting mirror due to photon 
momentum p = h/λ. As seen in the derivation, the result in this section is 
due to reflections from the cavity walls.

Walls at T

Cavity radiation

Radiation to
surroundings

Figure 13-6  Radiation within a cavity depends on the temperature of the walls only. 
Radiation to the outside depends on the nature of the walls as well as their temperature.
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box to the outside depends on both the temperature of the walls and the nature 
of the walls. For example, a red smooth box looks quite different from a blue 
rough box. However, there is something special about the radiation within the 
box. The following statement about this radiation will be proven in 
Section 13.2.3:

That is,

	 u u T= ( ) 	 (13.21)

	 u u Tλ λ λ= ( , ) 	 (13.22)

The spectral energy curves for cavity radiation were measured experimentally 
in the nineteenth century, and this was followed by attempts to understand 
the results theoretically. A famous attempt was made by Rayleigh and Jeans 
(see discussion in the text by Thornton and Rex, 2013). They assumed quite 
sensibly that radiation inside the cavity could be modeled by standing waves. 
This assumption led to a theoretical distribution uλ = uλ(λ, T) that worked 
quite well at longer wavelengths but failed at shorter wavelengths, because the 
number (and energy) of short-wavelength waves grows without bound. This 
so-called ultraviolet catastrophe demonstrated the need for a better theory.

In 1900, Max Planck showed that the correct energy density and spectral 
distribution could be obtained by assuming that electromagnetic radiation is 
quantized in energy packets of size hf, where f is the frequency of the radia
tion  and h is the very small constant now known as Planck’s constant, with 
SI value approximately 6.626 × 10−34 J ⋅ s. For electromagnetic radiation f = c/λ, 
so in terms of wavelength, the quantized energy is hc/λ.

To find the energy density, begin with the Rayleigh–Jeans model of stand-
ing waves in a box, like the one shown in Figure 13-6. For a box of length L, 
the allowed wavelengths are λ = 2L/n (where n is an integer), so the 
allowed energies are

	
ε

λ
= =hc hcn

L2 	
(13.23)

Whatever the nature of the materials of the wall, the energy density for 
cavity radiation depends only on the temperature of the walls, while 
the spectral energy density depends only on the temperature and the 
wavelength.
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Scaling up to three dimensions, the result is the same, but now n represents 
the magnitude of a “vector” in number space with three “components” nx, ny, 
nz representing the quantum numbers for the three dimensions.

The total energy is given by quantum statistics as the sum of all possible 
energies weighted by the BE distribution (Equation 13.12). The chemical 
potential is zero in this case, because in cavity radiation photon number is 
not conserved, and there is essentially no cost to create or destroy photons. 
Therefore, the total energy is

	

U n
e k T= =

−∑ ∑2 2
1

ε ε
εBE

all space

/

all space
B

	
(13.24)

where the sum over all space represents all possible combinations of 
quantum numbers nx, ny, nz. The factor 2 inserted in Equation 13.24 is due to 
the two possible photon polarizations for each standing wave.

The sum is evaluated by converting it to an integral in spherical coordinates 
(n, θ, φ). Because only positive values of nx, ny, nz are allowed, this restricts 
the integral to the first octant of number space, so the result of the θ and φ 
integrals is (1/8) × 4π = π/2. Therefore,
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(13.25)

Because ε and n are connected (Equation 13.23), it is useful to express this 
integral entirely in terms of ε. Making the substitutions n2 = (2Lε/hc)2 and 
dn = (2L/hc) dε, the integral becomes
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3 3

3
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(13.26)

Because L3 is the assumed cavity volume in this model and u = U/V,

	

u
h c e

dk T=
−

∞

∫8
13 3

3

0

π ε εε/ B

	

(13.27)

Evaluating the integral will yield the energy density. First, however, note that 
the integrand (with constants) represents the photon spectrum, expressed per 
unit energy. That is,
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u

h c e k Tε ε
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(13.28)

To evaluate the integral in Equation 13.27, first use the substitution x = ε/kBT. 
This leaves

	

u
k T

h c
x

e
dxx=

−

∞

∫8
1

4

3 3

3

0

π( )B

	

The remaining integral is a standard one (as found by Euler) and can be 
expressed as a product of a gamma function and the Riemann zeta function. 
The result of that evaluation is

	
u k T

h c
= 8 5 4

3 315

π ( )B

	
(13.29)

Notice that the energy density depends only on temperature, as stated at the 
beginning of this section.

13.2.3 � Experimental determination and 
the Stefan–Boltzmann law

As a way to observe experimentally the photon radiation expressed in 
Equation 13.29, suppose a small hole is placed in one side of the cavity shown 
in Figure 13-6. Radiation emitted should be proportional to the area of the hole 
and is measured as energy per unit area per unit time, designated R(T).

Dimensional analysis suggests that energy density u (energy/volume) should 
be multiplied by the photon speed c (distance/time) in order to get R(T) 
(energy/area/time). This is nearly true, but two additional correction factors 
are needed: 1/2 because only half the photons are traveling in the desired 
direction (say left/right), and an additional 1/2 for the directional compo-
nent (given by a cosine function) averaged over the entire surface. Therefore, 
R(T) = cu/4, with result

	
R T
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(13.30)
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Equation 13.30 is the famous Stefan–Boltzmann law. Customarily, the con-
stants attached to T 4 are lumped together into a single constant σ, the Stefan–
Boltzmann constant, with value in SI units

	
σ π= = × ⋅−2

5 67 10
5

3 2

4
8

15

k
h c

B 2 4W/(m K ).
	

Thus, R(T) = σT 4. This result (but without Planck’s constant) was known 
experimentally before Planck’s theory.

This relationship for energy escaping from a hole holds equally well for energy 
emitted from the surface of a body at temperature T. A model often used for 
such a body is called a blackbody, defined as one that absorbs all incident radi-
ation, so αλ = 1 for all wavelengths. If the body is not black but instead has a 
mean absorptivity α over all wavelengths with α < 1, the Stefan–Boltzmann 
law has to be modified to give the energy radiated as ασT 4 rather than σT 4.

We are now in a position to return to the statements 13.21 and 13.22 and prove 
their validity. Consider the box shown in Figure 13-7. The box is composed of 
two halves, A and B, with the walls made of different materials but at the same 
temperature. Suppose that the energy density u in the two halves of the box is 
different, with say uA > uB. If the two halves are separated by a partition with 
a hole in it, energy will be incident on both sides of the hole, and there would 
be a net flux of energy from A to B, because uA > uB. Thus, B will heat and A 
will cool, with no external work being done on the system. This is a violation 
of the Clausius statement of the second law. A similar argument would hold 
if uB > uA. We conclude then that uA = uB. In other words, the energy density 
within a cavity depends only on the temperature of the walls and not on the 
nature of the walls, which is the statement 13.21.

Walls at T

Material A Material B

uA uB

Figure 13-7  If the energy density of the cavity radiation in A is different from that in B, 
then the second law will be violated. For that reason, the energy density of cavity radiation 
depends on the temperature only.
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This argument may now be extended to the spectral energy density uλ 
simply  by covering the hole with a filter passing radiation only in the nar-
row band between λ and λ + dλ. uλ

a must then equal uλ
B, by the argument just 

employed. From this, statement 13.22 follows.

13.2.4 � Thermodynamic derivation of 
the Stefan–Boltzmann law

The energy equation for a PVT system is
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∂
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(8.11)

Also, the following relations have been shown to apply to cavity radiation:

	
P u U uV u u T= = =1

3
, ( )and

	

Substituting these relations into Equation 8.11,
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Integrating,

	 u AT= 4
	 (13.31)

where A is a constant. This is consistent with the Stefan–Boltzmann law, as 
derived previously from quantum statistics.

13.2.5  Spectral distribution

It is straightforward to change the energy spectrum distribution uε in Equation 
13.28 to the spectral energy density uλ. For photons ε = hc/λ, and therefore 
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dε = (hc/λ2) dλ. (In taking this derivative, we ignore the minus sign, which is 
irrelevant for the energy density.) Making these substitutions,
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Therefore, the spectral energy density is
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Notice that uλ is a function of both λ and T, consistent with Equation 13.21.

In practice, it is easier to measure the spectral emissivity ελ than the 
spectral  energy density uλ. Similar to the conversion process discussed in 
Section  13.2.3, this involves converting energy per unit volume per unit 
wavelength to energy per unit area per unit time, which requires the factor c/4. 
That is, ελ = cuλ/4, with result

	
ε π
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(13.33)

This result is usually referred to as the Planck radiation law. The quantity ελ 
gives the power per unit area per unit wavelength emitted from a cavity hole or 
from the surface of a perfect blackbody.

13.2.6  Analysis of spectral energy and the Wien law

A graph of the spectral energy density is shown in Figure 13-8. This graph 
contains a wealth of information. First, notice how the curve changes as the 
temperature increases. The curve grows larger overall, indicating that more 
radiation is emitted as the temperature increases.

Notice also that each curve has a well-defined peak. The wavelength 
associated  with this peak is defined as λmax. Figure 13-8 shows that λmax 
decreases as temperature increases. It makes physical sense that hotter objects 

An alternate derivation of the Stefan–Boltzmann law involves integrating 
the spectral energy density or Planck law over all wavelengths.
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should emit more photons with shorter wavelengths, because there  is more 
energy available and each photon’s energy is hc/λ. The temperature depen-
dence of λmax is also consistent with the example of the electric heating element 
discussed earlier. A warm heating element emits almost entirely in the infra-
red part of the spectrum (longer wavelengths), but a much hotter element 
emits shorter-wavelength red and orange light.

In principle, it is straightforward to find the peak by setting duλ/dλ = 0 
and solving for λ = λmax. This process is fairly tedious, so we leave it to the 
problems at the end of this chapter (Problem 13.16). The result is a simple 
expression

	
λmax . ( )T = × ⋅−2 898 10 3 m K Wien law

	 (13.34)

which is known as the Wien law. Like the Stefan–Boltzmann law, the Wien 
law was known experimentally before Planck’s theory.

13.2.7  Some applications

Given its general nature, blackbody radiation is fairly ubiquitous in scientific 
and everyday applications.

T = 2500 K

T = 3000 K

T = 2000 K

Curve of λmax

λ (μm)

uλ
(J/m4)

4.0 × 104

3.0

2.0

1.0

0
0 1 2 3 4 5

Figure 13-8  Spectral energy density as a function of λ and T for cavity radiation.
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Observed spectra of stars follow closely to a theoretical blackbody, though 
with  interruptions in the form of dark absorption lines corresponding to 
the star’s elemental composition. Our sun is a good example. With surface 
temperature about 5780 K, the peak wavelength of the sun’s radiation is given 
by the Wien law as

	
λmax

.
.= × ⋅ = × =

−
−2 898 10

5 01 10
3

7m K
5780K

m 501nm
	

This is consistent with our observation of the sun as fairly white, with emission 
distributed across the visible spectrum.

On the other hand, many stars exhibit a distinct bluish hue, indicating that 
they are hotter. One example is the bright nearby star Sirius A, which is eas-
ily visible to the naked eye and is in fact the brightest star in our sky. Its 
temperature is 9940 K, so its blackbody spectrum peaks at
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7m K
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This is actually in the near ultraviolet! The blue tint follows from the fact that 
the spectral output drops quickly, as per the Planck law, at the higher end of 
the visible spectrum (λ > 500 nm). Similarly, there are many visible stars 
with a reddish tint, indicating a cooler surface temperature than the sun. 
The  spectral classification scheme used by astronomers (designated by the 
letters OBAFGKM) follows the sequence from blue to red.

Another important example from astrophysics is the cosmic microwave 
background (CMB) radiation, discovered in the early 1960s by Penzias and 
Wilson. With a radio telescope, they observed a blackbody spectrum with a 
peak wavelength close to 1.06 mm when the telescope was directed toward no 
object in particular—essentially empty space. The corresponding temperature 
according to the Wien law is
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The CMB provides, along with Hubble’s law, solid evidence for origin of the 
universe in a Big Bang approximately 13.7 billion years ago. It is evidence of a 



13.2 Ph otons and Thermal Radiation    317

hot early universe, but with the radiation now severely redshifted to an equiv-
alent temperature of 2.73 K.

Although the Big Bang is now well established, the CMB is still the subject of 
intense study. Two space-based telescopes—the Cosmic Background Explorer 
(COBE) in the 1990s and the Wilkinson Microwave Anisotropy Probe (WMAP) 
in the early 2000s—have carefully mapped the CMB throughout the sky. Both 
missions found strong correlation with a Planck blackbody curve. However, 
the latter probe was more sensitive and discovered some anisotropy in the 
radiation, which might have significant consequences for our understanding 
of the Big Bang or cosmology.

Back on Earth, humans and other warm-blooded animals act as blackbody 
radiators, as we are generally warmer than our surroundings. Wien’s law 
predicts for a body temperature of 310 K (37°C) a peak wavelength of 9.35 µm, 
squarely in the infrared part of the spectrum. Infrared thermometers, used 
to detect radiation and thereby determine temperature, are now in wide-
spread use by medical practitioners and in industry. Radiative loss of energy 
from the body occurs (along with rapid cooling) when, for example, the head 
or hands are uncovered in extremely cold conditions. The Stefan–Boltzmann 
law, with radiative power proportional to T 4, explains why this is so impor-
tant. You may have seen marathon runners given shiny foil capes at the end 
of a race, to wrap around themselves and prevent excessive radiative loss. The 
same radiative loss makes humans observable in the dark, through the use of 
infrared photography.

13.2.8  Kirchhoff law

The Kirchhoff law is often quoted as “Good absorbers are good emitters.” 
A more precise formulation is

ελ/αλ is a constant for all surfaces, at a given temperature and wavelength.

The Kirchhoff law follows from our previous analysis for cavity and blackbody 
radiation. Refer again to Figure 13-6. If a body (not necessary black) is placed 
inside the cavity, the radiation will be preserved within the cavity if the energy 
absorbed by the body per second, between the wavelengths λ and λ + dλ, is 
equal to the energy radiated between those wavelengths. That is,

	
α λ ε λλ λ λ

1
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cu d d=
	

(13.35)
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The factor c/4 was explained in Section 13.2.5, and an additional factor αλ 
now applies for imperfect blackbodies, with αλ = 1 only in the case of a perfect 
blackbody. Therefore, by Equation 13.22,
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λ
λ= c

u T
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(13.36)

The right side of Equation 13.36 is a universal function of λ and T and is inde-
pendent of the nature of the body. This implies that, at a given wavelength and 
temperature,

	 ε αλ λ= C 	 (13.37)

where C is a constant that is the same for all bodies. This is the Kirchhoff law, 
as presented above.

Finally, there is one more important point. If the body is black, with αblack = 1, 
Equation 13.36 gives

	
ε λλ λ

black = 1
4

cu T( , )
	

This means that uλ and ελ
black have exactly the same dependence on λ and T. This 

explains the equivalence between cavity radiation and blackbody radiation.

13.3 � APPLICATION OF FD STATISTICS 
TO ELECTRONS IN METALS

In the late nineteenth century, attempts were made to understand the prop-
erties of metals by modeling the free electrons in a metal as a classical ideal 
gas. Although electrical conduction can be modeled successfully this way, it is 
easily shown that this method fails to predict the electrons’ contribution to the 
heat capacity. A gas of electrons, free to move in three dimensions, should have 
three degrees of freedom and therefore should contribute 3R/2 to the molar 
heat capacity of a good conductor, such as copper. However, the observed 
heat capacity of copper is close to 3R, as one would find considering only lat-
tice vibrations (Section 3.4.4). There is a small contribution (on the order of 
0.01R) from the electrons, and this contribution increases with increasing 
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temperature. It is evident that quantum statistics must be considered to solve 
the heat capacity problem.

13.3.1  Fermions at T = 0

Electrons are fermions, so the number of electrons per state is either 0 or 1, as 
per the FD distribution nFD. At T = 0, nFD is a step function, as shown in 
Figure  13-2. It will also be useful to know the fermion number density n(ε), 
defined as the number of particles per unit energy from ε to ε + dε.

The energy density n(ε), and distribution function nFD  are related through 
the density of states g(ε), defined as the number of states per unit  energy 
from ε to ε + dε. By their definitions, the three functions are related by

	 n g n( ) ( )ε ε= FD 	 (13.38)

Finding the density of states is the key step in understanding the distribution 
of energies for the conduction electrons.

To model the electrons in a metal, consider the quantized energy levels of 
identical particles of mass m trapped in a cube of side L. Solving the Schrödinger 
equation for this system leads to quantized energy levels

	
ε = + +( ) =h

mL
n n n

h r
mL

x y z

2

2
2 2 2

2 2

28 8 	
(13.39)

where the ni are integer quantum numbers 1, 2, 3, … and r n n nx y z
2 2 2 2= + +  gives 

the “radius” r in a number space (nx, ny, nz), corresponding to energy ε, as 
shown in Figure 13-9.

At T = 0, the highest filled energy level corresponds to the chemical potential 
µ in Figure 13-2, and in this context, the highest energy is defined as the Fermi 
energy εF. This occurs at the largest number radius r = R, so

	
εF = h R

mL

2 2

28 	
(13.40)

Notice that n(ε) is analogous to the function uε, defined for bosons in 
Section 13.2.2.
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That largest radius R (in number space) contains the total number of particles 
N, which is analogous to the “volume” of the “sphere” of radius R, with two 
important corrections:

	 1.	 The number of states is actually twice the number assumed to this point, 
due to the fermion spin degeneracy

	 2.	O nly positive quantum numbers are allowed, so only one-eighth of the 
number sphere may be occupied

Thus, N R= × ×2 1
8

4
3

3π , or

	
N R= 1

3
3π

	
(13.41)

Combining Equations 13.40 and 13.41,
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(13.42)

where we have used V = L3 as the box’s volume. Equation 13.42 is useful, 
because it allows computation of the Fermi energy for a real system with 
particle density N/V. For most metals, the Fermi energy is 1–10 eV.

To find the density of states, consider a state with energy ε corresponding to 
radius r in the number sphere, with the relationship between ε and r given in 
Equation 13.39. Analogous to Equation 13.41, the number Nr of electrons up to 
radius r is Nr = (1/3)πr3. Then, by Equation 13.39,

nx

ny

nz

r

Figure 13-9  Number space (nx, ny, nz) corresponding to energy ε in Equation 13.39. 
The “radius” r = R corresponds to the maximum values of the quantum numbers.
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ε
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(13.43)

In terms of the Fermi energy (Equation 13.42),
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Rearranging,
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By definition, the density of states is g(E) = dNr/dε, which reduces to

	

g N( )ε ε
ε
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(13.45)

Recall that the fermion number density is given by Equation 13.38. At T = 0, the 
FD distribution is a step function (Figure 13-2), so at this temperature
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(13.46)

The result is shown in Figure 13-10a. All levels are occupied up to the Fermi 
energy, but above the Fermi energy n(ε) = 0.

The distribution in Equation 13.46 can be used, for example, to compute the 
mean energy of the electrons in the distribution
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where Equation 13.46 was used for n(ε). Now using Equation 13.45,
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which is easily evaluated to give

	
E = 3

5
εF

	
(13.47)

This result seems quite realistic, given the shape of the distribution in 
Figure 13-10a. For a collection of N fermions, the total energy is then

	
U NE N= = 3

5
εF

	
(13.48)

Note that the Fermi energy εF and chemical potential μ are only equal at T = 0. 
The Fermi energy is simply the energy of the highest occupied state when T = 0, 
whereas μ for the system varies as a function of temperature.

n(ε)(a)

(b)

εεF

T = 0

ε

n(ε)

μ

T > 0

Figure 13-10  (a) Fermion number density function n(ε) at T = 0. All levels are occupied up 
to the Fermi energy εF. (b) Fermion number density function n(ε) at T > 0 (solid line) and 
T ≫ 0 (dashed line). For reference, the T = 0 graph is included is a thin line. Notice that at 
high temperatures, the curve approaches the classical MB distribution.
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13.3.2  Fermions at T > 0

When thermal energy is added to the system, some of the fermions absorb 
energy and end up with ε > εF. By Equation 13.38, the fermion number density 
is n g n( ) ( )ε ε= FD, or

	
n

g
e k T( )

( )
( )ε ε
ε µ=

+− / B 1 	
(13.49)

Figure 13-10b shows two distributions: one with the temperature some-
what larger than zero, and the other representing a temperature much larger 
than zero. Naturally, as the temperature increases, more fermions occupy 
higher energy states, and the distribution is “smeared” to higher energies. 
The distribution approaches a classical one at extremely high temperatures.

The situation is complicated somewhat by the fact that the chemical poten-
tial µ in Equation 13.49 is temperature dependent. In the T = 0 case (Section 
13.3.1), it was safe to assume that µ = εF, but this is no longer the case for T > 0. 
Rather, µ decreases as temperature increases. To see why this is so, note that 
µ is the energy at which the probability of a state being occupied is exactly 0.5. 
Since g(ε) is an increasing function of ε, then µ must be smaller to compensate.

In this general case, the number of fermions is
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and the total energy is
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(13.51)

13.3.3  Application to electron-specific heat capacity

It is now straightforward to understand why electrons do not contribute 3R/2 to 
a metal’s specific heat, as they would do classically (Section 13.3 introduction).

First, note that in a typical metal µ (or εF) is on the order of 1–10 eV. This is much 
larger than thermal energy kBT, except when the temperature is very high. 
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(For example, kBT≈1/40 eV at room temperature.) Now consider the shape of 
the T = 0 distribution in Figure 13-10a. For most electrons in the distribution, 
absorbing kBT worth of energy is impossible, because they would end up in a 
fully occupied state. The only exception to this is electrons that are at the top 
of the distribution, initially less than kBT away from εF. Thus, the fraction of 
electrons subject to thermal promotion is something like

	
A

k TB

Fε 	

where A is a constant slightly larger than 1, due to the shape of the distribution. 
In a detailed calculation, Sommerfeld found that A = π2/4 in the limit of low 
temperatures. Thus, the thermal energy added to a collection of N electrons is 
approximately
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Using Equation 13.48, the total energy is now
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The electronic contribution to the heat capacity (Equation 3.6) is CV  = ∂U/∂T, or

	
C

Nk T
V = π

ε

2 2

2
B

F 	
(13.53)

At room temperature (293 K), numerical evaluation gives cV ≈ 0.02R per mole 
of electrons. This is in agreement with the measured result. Further, as the 
temperature is raised or lowered from room temperature, the electronic heat 
capacity varies as predicted by Equation 13.53. In the limit as the temperature 
approaches absolute zero, the heat capacity also approaches zero, as required 
by the third law of thermodynamics (Chapter 12).

13.4  BE CONDENSATION

An important application of current interest is BE condensation. The graph of 
the BE distribution in Figure 13-3 suggests that at sufficiently low temperature, 
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a collection of identical bosons might lie mostly or entirely in the lowest energy 
state, given that there is no statistical limitation on how many bosons might 
occupy a single state. Such a state was first suggested by Bose and Einstein in 
1924 and has since been observed in multiple ways (Bose 1924).

13.4.1  Theoretical model

We present here a theoretical model for estimating the maximum temperature 
for a particular BEC. More detailed models exist throughout the literature.

This model uses the same three-dimensional gas model as used for fermions in 
Section 13.3. The only adjustment needed is the factor of two between the boson 
and fermion distributions, due to the Pauli exclusion principle. Therefore, the 
fermion density of states in Equation 13.45 may be modified for bosons to
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(13.54)

In this context, m is the mass of each of the identical, indistinguishable bosons 
in the collection. The number distribution n(ε), similar to Equation 13.38 for fer-
mions, is
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where nBE is given by Equation 13.12.

The theoretical model can be related to experiment. To begin, the number N 
of bosons in the collection is equal to the number distribution integrated over 
all energies. That is,
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The BEC forms when the chemical potential is close to zero (Problem 13.32), so 
to a good approximation
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after substituting x = ε/kBT.

The value of the integral in Equation 13.57 is
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after approximating the zeta function. Therefore, the approximate answer to 
Equation 13.57 is
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Equation 13.58 can be solved for temperature to yield Tc, called the critical 
temperature, which is the highest temperature at which the BEC should 
form. The result is
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The connection with experiment is possible because N/V in Equation 13.59 is 
simply the particle density. Thus, Tc can be estimated for a collection of bosons 
with given mass and density. For example, the number density of liquid helium 
at the point it reaches the superfluid stage is about 2.11 × 1028 m−3. With a mass 
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of 6.65 × 10−27 kg for a 4He atom, this gives Tc ≈ 3.06 K, which is less than 1 K 
above the observed transition temperature.

13.4.2  Experimental observations

Superfluid behavior was first observed in 4He in 1927 by Peter Kapitza and col-
leagues. Helium becomes liquid at 4.2 K at atmospheric pressure, but the tem-
perature can easily be reduced further by reducing the pressure of the vapor 
surrounding the fluid. Once a temperature of 2.17 K is reached, superfluid 
effects are visible, and they are remarkable.

First, the name superfluid comes from the fact that the fluid can flow with 
essentially zero viscosity through even the smallest holes and capillaries. This 
low viscosity helps create a creeping film of fluid that can rise and flow over 
the walls of its container. Low viscosity also contributes to the fountain effect 
(or thermomechanical effect), where incident electromagnetic radiation causes 
the fluid to expand and thus rise through a small capillary and spray upward. 
As discussed in Section 10.5.2, the transition from normal to superfluid phases 
at 2.17 K is accompanied by a large spike in heat capacity. The transition 
temperature is often called the lambda point, because of the shape of the heat 
capacity graph (Figure 10-12).

Another interesting phenomenon that occurs below the lambda point is second 
sound, which is actually not sound but heat transfer that occurs in a wavelike 
pattern. The speed of second sound is not as high as the speed of normal 
sound waves; it is zero just below the lambda point and increases at  lower 
temperatures, reaching a maximum of 20 m/s at 1.7 K (see Lane et al., 1947).

It is an important result of quantum statistics that the superfluid behavior of 
the rare isotope 3He (a fermion) is vastly different than that of the boson 4He. 
3He becomes a superfluid only at temperatures of 2.7 mK and lower and is 
aided by the presence of extreme pressure. It cannot be a true BEC, but instead 
it is thought that the fermions form pairs to create bosons, somewhat analogous 
to the electron-pairing mechanism in superconductors.

Strictly speaking, superfluids are not entirely equivalent to a BEC. First 
of all, the atoms in a superfluid are interacting. Second, only a fraction 
of the atoms in a superfluid are in the condensed state. However, this 
fraction approaches 1 as T approaches zero.
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It was not until 1995 that Cornell and Wieman produced the first gaseous 
BEC, in a gas of rubidium atoms (the 87Rb isotope) at very low pressure and 
temperature, about 170 nK. They used the technique of laser cooling to 
achieve such temperatures and an extremely dilute gas containing only a 
few thousand  atoms. A BEC can exhibit unusual properties, such as quan-
tized vortices (also found in superfluid helium). The vortices have been used 
to model the behavior of black holes. Another interesting effect observed is 
interference, attributed to the system’s wave–particle duality.

Some further insight into the properties of the BEC may be gained by consid-
ering how its heat capacity varies with temperature. A typical graph of heat 
capacity as a function of temperature is shown in Figure 13-11. Notice that 
CV approaches zero as the temperature approaches zero, as required by the 
third law (Chapter 12). Above the transition temperature Tc, the gas in the nor-
mal state has molar heat capacity cV = 3kB/2, consistent with the equipartition 
theorem. Below Tc, it can be shown (Problem 13.33) that the BE distribution 
gives internal energy U proportional to T  5/2. By Equation 3.6, the heat capacity 
CV = ∂U/∂T is proportional to T 3/2, which matches the shape of the curve 
shown in Figure 13-11. Experimental data are consistent with the theoretical 
curve. The boundary between the condensed and normal states forms a con-
tinuous “cusp” that is easily seen, which is in contrast to the “spike” in the heat 
capacity at Tc for the superfluid transition (Figure 10-12). This is one of the clear 
distinctions between superfluids and BEC gases.

PROBLEMS

	 13.1	 Following the example of Section 13.1.2, find and count all the pos-
sible states for each of the three distributions (MB, FD, and BE) for 
the following cases: (a) two particles and three states and (b) three 
particles and two states. (c) Discuss any patterns you see developing, 

cV

1.5kB

Tc T

Figure 13-11  Molar heat capacity cV as a function of temperature for a BEC.
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considering the example in this book and the two cases here in (a) 
and (b).

	 13.2	 Following the example of Section 13.1.2, find and count all the possi-
ble states for each of the three distributions (MB, FD, and BE) for case 
of two particles and five states.

	 13.3	 Verify that the sum of probabilities given by Equation 13.3 is 
exactly one.

	 13.4	 For a single particle with energy ε and chemical potential µ, show that 
the average occupancy is given by

	
n

u
= − ∂

∂
1
Z

Z

	

		  where u = (ε−μ)/kBT.
	 13.5	 Show that the formula derived in Problem 13.4  gives the correct dis-

tributions for both FD and BE statistics.
	 13.6	 (a) Graph the FD distribution (Equation 13.7) using the following 

parameters: µ = 0.5 eV, T = 300 K. (b) Expressed as a fraction of µ, 
how far from µ is ε when the distribution function is equal to (i) 0.9 
and (ii) 0.1? (c) Repeat (a) and (b) for the same chemical potential 
but T = 1000 K. (d) Discuss why the answers to (b) and (c) differ as 
they do.

	 13.7	 Show that Equation 13.16 follows from the result of kinetic theory in 
Equation 3.13.

	 13.8	 Show that evaluation of the integral in Equation 13.27 leads to a prod-
uct of a gamma function and a Riemann zeta function, with the result 
given in Equation 13.29.

	 13.9	 In Section 13.2.1, it was argued that the chemical potential should be 
zero for a collection of photons in cavity radiation. Make the same 
argument based on thermodynamic grounds. Hint: Consider the 
Helmholtz free energy.

	 13.10	 (a) Calculate the temperature of the sun, assuming it to be a perfect 
blackbody, if the rate of solar energy reaching Earth’s atmosphere 
is 1370 W/m2 (called the solar constant). The radius of the sun is 
6.96 × 108 m, and the mean distance of the sun from the earth is 
1.496 × 1011 m, also known as one astronomical unit. (Slightly less 
than half the sun’s radiation reaches Earth’s surface, on average, but 
this still leaves over 600 W of power for each m2 of the earth’s surface. 
This explains the interest in solar panels.) (b) Find the power radiated 
per square meter on the sun’s surface. (c) Find the total power gener-
ated by the sun and the corresponding rate of mass loss due to nuclear 
fusion.
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	 13.11	 Convert the spectral energy density uλ to a frequency distribution uf, 
which expresses energy per unit volume per unit frequency, in terms 
of frequency f.

	 13.12	E xpress the Planck radiation law in terms of frequency f.
	 13.13	U se the Planck law to derive the Stefan–Boltzmann law by integrating 

ελ over all possible wavelengths.
	 13.14	 Show that in the limit of long wavelengths, the Planck law may be 

approximated by

	
ε π

λλ = 2
4

ck TB

	

		  (This is in fact the result obtained by Rayleigh and Jeans.)
	 13.15	M odel a human body as a cylinder of height 1.70 m and radius 14 cm, 

with normal body temperature 37°C. Find the net blackbody radiation 
from the body per day, and compare with a normal daily food intake of 
2000 kcal, if the environment is (a) room temperature 20°C; (b) a very 
cold day −10°C. (The results should convince you of the importance of 
clothing to insulate the body!)

	 13.16	U se the spectral energy density uλ in Equation 13.32 to find the Wien 
law.

	 13.17	 The tungsten filament of an old-style light bulb reaches a temper-
ature of about 3300 K. Assume that it radiates as a perfect black-
body. (a)  What is the peak wavelength λmax? In what part of the 
spectrum does this lie? (b) What is the surface area of a 100-W fila-
ment? (c) Assess this device’s efficiency as a light source by comput-
ing the fraction of the radiation that falls in the visible spectrum, 
400–700 nm.

	 13.18	 The red giant star Arcturus is one of the brightest visible stars. 
Its  surface temperature is 4290 K. (a) Find the peak wavelength of 
radiation, assuming Arcturus is a perfect blackbody, and assess the 
result relative to the “red giant” label. (b) Arcturus is truly a giant, with 
a radius 1.77 × 1010 m, which is more than 25 times larger than the sun. 
Find the net power output from Arcturus, and compare with that of 
the sun (3.8 × 1026 W).

	 13.19	 Show that MB statistics are valid for the common gas nitrogen at room 
temperature (20°C) and atmospheric pressure. Hint: Evaluate

	

N n d=
∞

∫ ( )ε ε
0 	
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		  using the boson density of states (Equation 13.54) along with the MB 
factor in Equation 13.13. Thereby show that the constant factor e k Tµ/ B  is 
small under the conditions given, and use this fact to justify the use of 
MB statistics.

	 13.20	A s a different approach to the preceding problem, consider the same 
gas but this time compute (a) the de Broglie wavelength (using the rms 
speed) and (b) the mean intermolecular spacing, assumed to be V1/3, 
where V is the mean volume occupied by a single molecule in the gas. 
(c) Compare the results of (a) and (b), and discuss the implications for 
MB statistics.

	 13.21	 Find the Fermi energy for copper, given a density of 8960 kg/m3 and 
exactly one conduction electron per atom.

	 13.22	 Show that the thermal energy contained in the electrons in a metal is 
small by computing separately the first and second terms in Equation 
13.52 at room temperature (293 K) for one mole of copper, which has 
εF = 7.0 eV.

	 13.23	 The Fermi energy for aluminum is 11.7 eV. Use this to estimate the 
number of conduction electrons per atom in aluminum. Does your 
answer make sense?

	 13.24	 Gold has a density of 19,300 kg/m3 and, like copper, has one conduc-
tion electron per atom. (a) Compute the Fermi energy for gold. (b) What 
would be the mean kinetic energy of the electrons in gold at 293 K if 
they were treated as a three-dimensional ideal gas? (c) Reconcile the 
vast difference between your answers in (a) and (b).

	 13.25	A  neutron star is a close-packed collection of (almost entirely) 
neutrons,  which are fermions. Compute the Fermi energy in a neu-
tron star of typical size, mass 4.0 × 1030 kg and radius 11 km. Comment 
on the result relative to the Fermi energy of conduction electrons in a 
metal.

	 13.26	 (a) Using Equation 7.4 from thermodynamics and the result that 
U NE N= = ( )3 5/ Fε  (Equation 13.48), evaluate the pressure associ-
ated with conduction electrons in a metal, as a function of the Fermi 
energy and particle density N/V. The result is known as degeneracy 
pressure and is responsible for keeping the metal from collapsing to 
a larger density due to the attractive electrostatic forces. (b) Evaluate 
the degeneracy pressure numerically for copper, with Fermi energy 
7.0 eV and density 8960 kg/m3.

	 13.27	 (a) �Show that the condition for BEC transition (Equation 13.59) can be 
written

	 nλdB
3 2 612= . 	
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		  where n = N/V is the particle density and λdB is the thermal de 
Broglie wavelength, given by

	
λ π

dB
B

= 2 2�
mk T 	

	 (b) �Evaluate the thermal de Broglie wavelength for a typical BEC 
density of 1020 m−3, and discuss the implications.

	 13.28	E stimate the temperature at which liquid neon (density = 1200 kg/
m3) should become a superfluid, and use the result to explain why 
superfluid behavior is not found in neon.

	 13.29	 For a typical BEC density of 1020 m−3, estimate the maximum possi-
ble temperature for a BEC in 87Rb and compare with the temperature 
170 nK of the first observed BEC.

	 13.30	 Find the number density required for a BEC to form in helium at room 
temperature (293 K). Use your result to analyze the likelihood of this 
happening.

	 13.31	 Cornell and Wieman reported making a BEC with about 2000 87Rb 
atoms in a volume of 10−15 m3. Estimate the maximum temperature of 
the BEC.

	 13.32	 The text argues that μ ≈ 0 when a BEC forms. Justify this argument 
using the BE distribution and the fact that in a BEC essentially all the 
particles have condensed to the ground state.

	 13.33	U se the BE distribution to show that the internal energy of a BEC in the 
condensed state should vary with temperature as T 5/2. Thus, show that 
the heat capacity of a BEC should vary as T 3/2.
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Appendix A: Values of Physical 
Constants and Conversion Factors

Quantity Symbol Value

Gas constant R 8.31 J/(K ⋅ mol)

Avogadro constant NA 6.02 × 1023 mol−1

Boltzmann constant kB 1.38 × 10−23 J/K

Stefan–Boltzmann constant σ 5.67 × 10−8 W/(m2 ⋅ K4)

Planck constant h 6.63 × 10−34 J ⋅ s

Elementary charge e 1.60 × 10−19 C

Faraday constant F0 = eNA 9.65 × 104 C

Speed of lighta c 3.00 × 108 m/s

Acceleration due to gravity g 9.81 m/s2

Permeability of free space µ0 4π × 10−7 H/m

Permittivity of free space ε0 8.85 × 10−7 F/m

Mechanical equivalent of heat J 4.19 J/cal

Molar volume of an ideal gas at STP v 22.4 L

Atmopheric pressure 1.01 × 105 N/m2 = 101 kPa
=760 mm of Hg
=760 torr

1 horsepower hp 746 W

1 kilowatt hour kW ⋅ h 3.60 × 106 J

Bohr magneton µB 9.27 × 10−24 J/T

a	 In the modern SI system, the speed of light is defined to be the exact nine-digit 
number 299,792,458 m/s.
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Appendix B: Some Mathematical 
Relations Used in Thermodynamics

B.1  RECIPROCAL AND CYCLICAL RELATIONS

Suppose that there exists a relation between the variables x, y, and z

	 F x y z( , , ) = 0 	 (B.1)

so that only two of them are independent. Equation B.1 can be rearranged to 
give x as a function of y and z:

	 x x y z= ( , ) 	 (B.2)

where x(y, z) stands as usual for a function of y and z. The infinitesimal change 
dx in x resulting from infinitesimal changes dy and dz in y and z is
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(B.3)

Similarly, writing y = y(x, z),
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(B.4)

Now using dy from Equation B.4 in Equation B.3:
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(B.5)

Arbitrarily, one can choose x and z to be the independent variables. This means 
that it is possible to have dz = 0 in Equation B.5 and still have a nonzero value 
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for dx, because x and z are independent. With this value of dz and with the 
common term dx cancelled, Equation B.5 becomes

	

1 = ∂
∂
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(B.6)

This is known as the reciprocal relation.

Alternatively, one could choose dx = 0 with dz ≠ 0 in Equation B.5, yielding
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(B.7)

using Equation B.6. This is known as the cyclical relation or simply the cyclical 
rule. It is easy to remember because of the cyclical order. Note the −1 on the 
right-hand side.

B.2  CHAIN RULE

Suppose again that x, y, and z are not independent, being related by Equation 
B.1. Consider some function ϕ of x, y, and z. Because of Equation B.1, ϕ may be 
expressed in terms of only two of the variables, say

	 φ φ= (x y, ) 	 (B.8)
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Equation B.8 can be rearranged to give

	 x x y= ( , )φ 	 (B.9)

so
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(B.10)

Dividing Equation B.10 through by dz, holding ϕ constant,
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(B.11)

This is the chain rule. Note the common ϕ outside each partial derivative. The 
chain rule must not be confused with the cyclical rule, which is a relation just 
between the variables x, y, and z with no other function ϕ involved.

B.3 � THE CONDITION FOR A 
DIFFERENTIAL TO BE EXACT

A mathematical function ϕ (x, y) of x and y takes unique values for each pair of 
values of x and y. When x and y change by dx and dy, the infinitesimal change 
in ϕ is

	

d
x
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y x

φ φ φ= ∂
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(B.12)

Because it is the differential of a mathematical function, dϕ is called an exact 
differential. A finite change in ϕ when x changes from x1 to x2 and y from y1 to y2 is

	

∆ = − = ∫φ φ φ φ( , ) ( , )x y x y d
x y

x y

2 2 1 1

1 1

2 2

	

(B.13)
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With the values of ϕ fixed at the points (x1, y1) and (x2, y2), then Δϕ is also fixed; 
consequently, it does not matter how x and y may vary during the integration 
between the given limits. This means that the integral is path independent. 
In thermodynamics it is frequently important to know whether an integral is 
path independent; in other words, it is necessary to establish whether the inte-
grand is an exact differential. There is a simple test for this.

Suppose there is a differential of the form

	 dG X dx Y dy= + 	 (B.14)

where X and Y are in general functions of both x and y. We wish to establish now 
whether dG is exact. Differentiating the coefficient of dx in Equation B.12 with 
respect to y, while holding x constant, gives ∂2ϕ/∂y ∂x, while differentiating the 
coefficient of dy with respect to x, while holding y constant, gives ∂2ϕ/∂x ∂y. It 
is shown in the standard texts on partial differentiation that these two partial 
derivatives are equal; in other words, the order of the differentiation is imma-
terial. If dG is an exact differential, then
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(B.15)

This argument shows that Equation B.15 is a necessary condition for dG to 
be exact; it may also be shown, using a more sophisticated argument, to be 
sufficient.

As an example, consider the differential

	 dG xy dx x y dy= +2 44 2 3

	 (B.16)

One may verify that Equation B.15 is satisfied by the differential dG given in 
Equation B.16. Therefore, dG is an exact differential. In fact the actual function 
G is yielded immediately upon integration. From the form of dG in Equation 
B.16,
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The only way for these two solutions for G to be equal is for f(y) = g(x) = a con-
stant. Thus G(x, y) = x2y4 + a constant. By similar means, it may be established 
that the differential

	
CG xy dx x y dy= +4 2 34

	

is inexact.

B.4 � INTEGRALS USED IN 
STATISTICAL MECHANICS

In Chapter 6, a number of definite integrals involving the Gaussian factor of 
the form

	

x en ax dx−
∞

∫ 2

0 	

(B.17)

(where a is some constant or combination of constants) arise and must be 
evaluated. The first such definite integral is encountered in Section 6.4.1 in the 
analysis of the distribution of velocities vx in a one-dimensional gas:

	

 BZ e mv k Tx dvx= −

−∞

∞

∫ 2 2/

	

To begin the evaluation, first note that the integrand is an even function, so 
that the definite integral over infinite limits can be replaced by two times the 
same integral with semi-infinite limits:

	

 BZ e mv k Tx dvx= −
∞
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2 2

0

/

	

(B.18)

This is a useful step, because tabulated integrals are generally given with limits 
zero to infinity. This now has the standard Gaussian form:

	

e ax dx−
∞

∫ 2

0 	
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where a is a constant. The result can be worked out in a delightful way through 
a transformation to polar coordinates, and the result is

	

e
a

ax dx−
∞

∫ =2

0

1
2

π

	

(B.19)

For the partition function in Equation B.18, the constant is a = m/2kBT, and 
therefore by Equation B.19

	
 BZ k T

m
= 2π

	

in agreement with the result given in Section 6.4.1.

The more general definite integral in Equation B.17 also has well-known 
results, which are tabulated in printed tables and now found in standard com-
putational software and online tools. The results can be related to the gamma 
function, which is of great interest in mathematics apart from its usefulness 
in this context. For purely computational purposes it is easier to avoid the 
gamma function and express the result in two forms, one for even values of the 
exponent and another for odd values:
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and
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(B.21)

As an example, you can easily verify that Equation 6.14 follows from applica-
tion of Equation B.20, and Equation 6.17 follows from application of Equation 
B.21.
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Appendix C: The Work Required 
to Magnetize a Magnetic Material 
and to Polarize a Dielectric

C.1  MAGNETIC WORK

Consider a sample of magnetic material becoming magnetized by being placed 
inside a long solenoid, as in Figure C.1. The length of the sample is l, the cross-
sectional area is A, and it fits exactly inside the whole volume of the solenoid. 
The current is quasistatically increased, and with it the applied magnetization 
is also increased.

The following relations hold:

	 1.	 B = μ0(H + M) = B0 + μ0M
		  where B is the magnetic field, H is the auxiliary field, M is the magnetiza-

tion or the magnetic moment per unit volume, B0 is the magnetic field in 
the absence of the specimen, and μ0 is the permeability of free space.

	 2.	 M = χmH
		  for a linear magnetizable material such a paramagnet, where χm is the 

magnetic susceptibility.
	 3.	 B = μ0(1 + χm)H = μμ0H
		  where μ = 1 + χm is the permeability.
	 4.	M = MV

where M is the overall magnetic moment.

For simplicity, it is assumed that all the vector quantities in the above relations 
are parallel, and they may be treated as scalars. Also, the vector quantities are 
considered uniform over the volume V of the long solenoid, so that any end 
effects are ignored.

From basic electromagnetism, the auxiliary field in the middle of a long sole-
noid is H = nI, where I is the current and with n is the number of turns per unit 
length. This means that

	 B nI0 0= µ 	
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The flux threading the solenoid is

	 Φ = =BAnl BnV 	

If the current is increased from its instantaneous value I to I + dI in a time dt, 
there is a back EMF

	
E = nV

dB
dt 	

It is the battery driving charge around the circuit against this back EMF that is 
the source of the work required to magnetize the sample.

The work done by the battery in the time dt, when charge I dt flows, is

	
W Idt nV

dB
dt

I dt
B V

dB= = =E 0

0µ 	

or

	
CW

B V
dB dM= +0

0
0 0µ

µ[ ]
	

Then the total work done in the magnetization process is

	
W V

B dB
V B dM V

B dB
B d= + = +∫ ∫ ∫ ∫0 0

0
0

0 0

0
0µ µ
M

	

l

I

Area A

Figure C.1  A magnetic material contained within a solenoid. The current is gradually 
increased from zero so that the material is magnetized.
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There are two terms here. The first is just the familiar energy term that the sole-
noid would have in the absence of the magnetic sample; upon integration, it 
gives the familiar energy density ( ) ( )B0

2
02/ µ . The second is the work required 

to bring the sample up to its final magnetization. We conclude that the infin-
itesimal work required to increase the overall magnetic moment from M to 
M + dM in the applied field B0 is

	
CW B d= 0 M

	

If the magnetization and the magnetic field are not constant over the volume 
of the sample as we have assumed, this argument may be extended to give

	
CW B dM dV= ∫ 0

	

where the integration takes place over the whole volume of the sample.

C.2  DIELECTRIC WORK

Now consider polarizing a dielectric quasistatically by placing it between the 
plates of a parallel plate capacitor as in Figure C.2 and gradually increasing 
the voltage V  across the plates. Assume that the dielectric exactly fills the 

Area A

a
Dielectric

V

Figure C.2  A dielectric material between the plates of a parallel plate capacitor. The volt-
age across the capacitor is gradually increased from zero so that the material is polarized.
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space between the plates and that the electric field is uniform, so that edge 
effects can be neglected.

The following relations hold:

	 1.	 D = ε0E + P
	 2.	 P = ε0χeE
	 3.	 D = ε0(1 + χe)E = ε0εE
	 4.	 p = PV

where E is the electric field, D electric displacement, P polarization or 
the electric dipole moment per unit volume, ε0 permittivity of free space, 
ε = 1 + χe relative permittivity, χe electric susceptibility, and p overall electric 
dipole moment. As for the magnetic case, assume that all the vector quanti-
ties in the above relations are parallel, and so the variables may be treated 
as scalars.

If the uniform free charge density on the plates is σ, Gauss’s law gives

	
D

Z
A

= =σ
	

where Z is the charge on each plate. Now increase the charge by dZ. The battery 
has to do work

	

CW dZ aE A dD VE dD

V dE dP E

= = =
= +

V ( )( )

( )0ε
	

where the volume is V = aA. Integrating,

	
W V EdE V EdP= + ∫∫ε0

	

The first term is the familiar energy term for the energy of an empty charged 
capacitor with an energy density ε0E2/2 between the plates. The second term 
is then the work done in polarizing the dielectric. Therefore, the infinitesimal 
work required to increase the overall dipole moment of a dielectric from p to 
p + dp in the field of E is

	
CW E dp=
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If the polarization and the electric field are not constant over the volume of the 
sample as we have assumed, this argument may be extended to give

	
CW E dP dV= ∫ 	

where the integration is over the volume of the dielectric.
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Appendix D: Answers to 
Selected Problems

Chapter 1

3. 327.79°; 6.83 cm; no.

4. 341.79°.

5. 348.35 K; 75.20°C.

6.

The accepted (gas thermometer) values are 77.4 K (N2), 90.2 K (O2), 373 K (H2O), 
and 505 K (Sn). The second constant-volume thermometer is as good as or 
better than the first in all cases, and in some cases it matches the handbook 
value to the nearest degree. This is not surprising, because the best results 
should be obtained at lower gas pressures, as per Equation 1.5.

Chapter 2

1. (a) 5.7 × 104 J. (b) −5.7 × 104 J.

5. (a) (P2 − P1)(V2 − V1). (b) −2.02 × 104 J.

9. −92 J.

Liquid/Solid

Copper Nickel 
Thermocouple

Platinum 
Resistance 

Thermometer
Constant-Volume 
H2 Thermometer

Constant-Volume 
H2 Thermometer

E (mV) TE (°) R (Ω) TR (°) P (atm) TP (°) P (atm) TP (°)

N2 −0.10 −9 1.96 54 1.82 73 0.29 79

O2 0.00 0 2.50 69 2.13 86 0.33 90

H2O 5.30 486 13.65 379 9.30 374 1.37 374

Sn 9.20 827 18.56 516 12.70 510 1.85 505

At T.P. 2.98 273 9.83 273 6.80 273 1.00 273
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12. (a) 4.3 × 105 N. (b) 9.0 m.

13. W F LdT
T

T

= ∫ α
1

2

.

14. 0.38 J.

15. 9.0 × 107 N/m2; no difference.

Chapter 3

1. (a) No. (b) Yes. (c) ΔU positive and same as (b).

2. �(a) No. (b) No. (c) It increases. Remember that, in ΔU = Q + W, we exclude 
any changes in the bulk KE and PE (see Section 3.2.1). Here the total energy, 
U + the bulk (PE + KE), remains constant, as there is no input of energy 
in the form of heat or work, and the organized motion of the rotational 
kinetic energy is converted into the random motion of internal energy 
(hence raising the temperature).

3. (a) No. (b) Yes, Q negative. (c) Negative.

4. (a) Q = 60 J. (b) Q = −70 J. (c) 50 J and 10 J absorbed.

5. (a) 0.10 m/s. (b) Work. (c) Heat.

6. W = −3.46 × 103 J; Q = 3.46 × 103 J; ΔU = 0.

15. 7.6 × 105 J.

16. �(a) 2.41 × 10−3 J/(K ⋅ mol); 0.302 J/(K ⋅ mol). (b) 7.53 J/mol. (c) 9.41 × 10−2 J/
(K ⋅ mol).

18. 696 m.

20. 208 years.

22. (a) P(V2 − V1). (b) nRT
V nb
V nb

n a V Vln / /2

1
2 1

−
−







+ −2 1 1( ).

24. 664 kJ.

25. (a) −4.80 × 105 J/kg. (b) −4.99 × 105 J/kg.
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Chapter 4

1. (a) 0.45. (b) 550 kJ/min.

2. No, the state of battery changes in the process as its stored energy changes.

4. �No; although energy is conserved (W = Q1 − Q2), the reported efficiency 
η = 0.55 is larger than the Carnot efficiency ηC = 0.50.

5. �Lowering temperature of cold reservoir, because it has a larger effect on the 
temperature ratio.

8. 1.2 × 106 J.

9. 1.6 kW.

15. η = 0.38.

Chapter 5

1. −1460 J/K.

4. (a) −60.6 J/K. (b) −13.1 J/K. (c) −12.2 J/K.

5. 0.226 J/K.

6. 0.424 J/K; 424 J/K.

7. (a) 67°C. (b) 0.60 J/K; 0.60 J/K.

9. 16 J/K.

Chapter 6

8. �(a) I = 6.3 × 10−45 kg ⋅ m2. (b) E0 = 3.8 × 10−23 J = 2.4 × 10−4 eV; Z = 106 which is 
much greater than 1, so the approximation is valid.

10. �(a) 1.37 × 109. (b) ≈1.0; 5.6 × 10−7; 6.7 × 10−8. (c) The partition function has 
changed significantly, but the probabilities are the same.

12. (a) 2.02. (b) 0.14 eV. (c) P(0 eV) = 0.49; P(0.2 eV) = 0.31; P(0.4 eV) = 0.20.
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14. (a) 17 mm/s. (b) 0.54 mm/s. (c) 35%.

15. (a) 0.6 m/s. (b) 1.0 m/s.

Chapter 7

2. P = RT/(v − b) − a/v2. This is the van der Waals equation.

3. 1.16 × 106 J.

4. Pv = RT + BP + CP2 + DP3 for one mole.

7. Δg = −8.43 × 105 J/mol; 2.3 × 104 J/mol given out (exothermic).

11. �(b) It is not related! Equation 7.49 gives Wuseful = −ΔG for those processes in 
which the end points are at (P0, T0). This is not so for this problem.

12. (a) −237 kJ/mol. (b) 1.23 V.

Chapter 8

10. �(a) Reversible; U, H. (b) Reversible; none. (c) Reversible; S. (d) Irreversible; 
U, H. (e) Irreversible; H.

13. (c) − + −− ( )V T P P V P P Bβ ( /)2 1 2
2

1
2 2 .

15. −2.3 K.

17. (a) 0. (b) 3.72 × 106 J. (c) 1.15 × 104 J/K.

Chapter 10

1. �(a) The liquid level gradually goes down until only vapor is left at Z. (b) The 
liquid–vapor interface becomes blurred as the critical point is approached, 
with the vapor and the liquid becoming indistinguishable.

2. (a) 31.9 Torr. (b) 17.5 Torr. (c) 1.1 × 10−7 g. Neglect volume of water in capillary.

5. 3.8 × 104 J/mol.

6. (a) 200 K, 1.01 atm (c) 2R (per mol).

7. Ssolid > Sliquid.
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8. −5.8 K.

9. 0.05 K.

Chapter 11

9. (b) 2.6 × 1010 Pa.

10. µ µ µNH N H3 2 2
1
2 3= +( ).

Chapter 12

1. No.

3. �For a boson gas all the particles can be in the lowest possible state, so the 
temperature should be lower for bosons. One might expect the energy to be 
lower than the Fermi energy for electrons, which is the energy of the highest 
occupied state at T = 0.

Chapter 13

1. (a) MB 9, FD 3, BE 6. (b) MB 8, FD not possible, BE 4.

2. MB 25, FD 10, BE 15.

10. (a) 5780 K. (b) 6.33 × 107 W/m2. (c) 3.85 × 1026 W; 4.28 × 109 kg/s.

12. ε f hf k T

hf
c e

=
−

2 1
1

3

2

π
/ B

.

17. (a) 878 nm (infrared). (b) 1.5 × 10−5 m2. (c) 0.12.

21. 7.0 eV.
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Index

A

Absolute temperature, 108
ideal gas scale, 87
SI unit for, 12

Absolute thermodynamic temperature 
scale, 8–9

Absolute zero, 288–291
unattainability, 293–295

Adiabat, equation of, 60–62
Adiabatic compressibility (κS), 205
Adiabatic demagnetizations, 229–230, 

294, 295
Adiabatic exponent, 61
Adiabatic process, 62, 95, 109–110
Adiabatic walls, see Adiathermal walls
Adiabatic work, 44
Adiathermal walls, 3–4
Air conditioner, 92
Allotropes, 286–287
α-sulfur, see Rhombohedral sulfur
α-tin, see Gray tin
Aluminum, 4
Antiferromagnetic ordering, 292
Arrow of time, 115–116
Atmospheric gases, 154
Atmospheric pressure, 239, 286
Atoms, 256, 279, 288–289

atomic particles, 261
laser cooling of atomic gases, 295

Auxiliary field, 224
Availability function (A), 186–187

useful work, 188–190

B

BE, see Bose–Einstein
BECs, see Bose–Einstein condensates
β-sulfur, see Monoclinic sulfur
β-tin, see White tin
Biological membranes, 276
Biological systems, 277
Blackbody, 312

Blackbody radiation, 306, 315, 317, 330
theory, 142

Black hole entropy, 122–123
Boiling point

of nitrogen, 256
of water, 248–249

Boltzmann constant (kB), 123
Boltzmann factor, 299–300

and probability, 144–147
Boltzmann relation, 136
Bose–Einstein (BE), 285

condensation, 324
distribution, 302–304, 304–305
experimental observations, 327–328
statistics (BE statistics), 298
theoretical model, 325–327

Bose–Einstein condensates (BECs), 295
Bosons, 261, 297–298, 302
Boundary, 1
Bulk modulus, 24

C

Caloric, 43
Calorimetry, 52
Carnot cycles, 73–74, 90, 119
Carnot efficiency, 90, 91
Carnot engine, 74, 83, 90, 93, 101–102

temperature scale from, 85–87
Carnot refrigerator, 91
Carnot’s theorem, 82, 90

corollary to, 84–85
proof of, 83–84

Cartesian coordinates, 134
Cavity radiation, 306

energy density for, 308–311
Celsius scale, 13
Centigrade scale, 13–14
Centigrade thermometers, differences 

with, 15
Central equation of thermodynamics, 121
Cerium magnesium nitrate 

(Ce2Mg3[NO3]12), 206
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Cerium magnesium nitrate, 231
Chain rule, 338–339
Chemical equilibrium, 6, 280
Chemical potential, 267

applications, 276
condition for, 279–280
and equilibrium, 272–275
Fermi level, 277–278
and Gibbs function, 270–272
and Helmholtz function, 269–270
and internal energy, 267–269
osmotic pressure, 276–277

Chemical reactions, 279, 283
Chemical symbols, 279
Classical distributions, 298–299
Classical statistics, 297

BE distribution, 302–305
bosons and fermions, 297–298
classical and quantum distributions, 

298–299
FD distribution, 301–302, 304–305
Gibbs factor and grand partition 

function, 299–300
MB distribution, 304, 304–305
and quantum statistics, 297

Clausius–Clapeyron equation, 244, 293
development of, 244–247
equation of vapor pressure curve, 

249–250
melting point of ice and boiling point 

of water, 248–249
melting water and winter sports, 

247–248
Clausius inequality, 101, 110

composite system, 103
cycle to derive, 102
development of, 101
discussion and implications, 104–105
integral sign indicates, 104

Clausius statement, 77, 80–81, 84
equivalence of Kelvin statement 

and, 81–82
CMB radiation, see Cosmic microwave 

background radiation
COBE, see Cosmic Background Explorer
Coefficient of performance (COP), 91–92
Coefficient of thermal expansion, 253
Complete equilibrium, 274
Composite system, 54, 103
Compressibility, 24, 206, 241, 253

Compression, 29, 241
ratio, 95

Condensation, 241
Conduction electrons, 292
Constant-pressure heat capacity (CP), 60
Constant-volume gas thermometer, 11
Constant entropy, 278
Constant pressure processes, 49–51
Constant volume, 49–51, 278
Constant volume heat capacity (CV), 

59, 202
Contact potential, 278
Contact potential difference, 278
Conversion factors, values of, 335
COP, see Coefficient of performance
Copper, 4, 57–58

pairs, 261
Cosmic Background Explorer 

(COBE), 317
Cosmic microwave background 

radiation (CMB radiation), 316
CP–CV

difference in, 199–201
relationship, 59

Creeping film of fluid, 327
Critical point, 241
Critical temperature, 241, 326
Cryogenic surgery, 217
Crystalline solid, 175
Crystal phase, 289–290
Curie constant, 227
Curie law, 226–227, 235, 291–292
Curie temperature, 256
Curie theory of paramagnetism, 291–292
Curie–Weiss law, 227
Current circulating, 254
Cycle, 78, 101
Cyclical

process, 79
relations, 337–338
rule, 205, 215, 232–233, 339

D

Deformation, 276
Degeneracy, 146
Degradation of energy, 142–144
Demagnetization process, 231
Density of states, 288, 319
Diamagnetic class, 256
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Diathermal boundary, 273
Diathermal walls, 3–4, 276
Dielectric material, 36–37, 345
Dielectric work, 345–347
Diffusive equilibrium, 6
Dilute gases, 285
Diode’s operation, 278
Disorder, entropy and, 137
Dissipative work, 33–34

E

Ehrenfest classification, 253
Ehrenfest equations for second-order 

phase changes, 257–260
Einstein mass–energy relation, 307
Electrical discharges, 242
Electrical resistance, 254
Electric charge (Z), 223–224
Electromagnetic radiation emission, 305
Electromagnetism, 223–224
Electron(s), 261, 277, 288–289

electron-specific heat capacity, 
application to, 323–324

magnetic moments, 289
in metals, 285
spins, 289
application to electron-specific heat 

capacity, 323–324
FD statistics application to, 318
fermions at T = 0, 319–322
fermions at T > 0, 323

Elementary dipoles, 295
Energy, 73, 277, 317

crisis, 144
density for cavity radiation, 308–311
distribution, 155
equation, 66, 203–204
minimum, 286
thermal, 242, 291

Engines, 90
efficiency of, 74–76, 90–91
heat pumps, 92–93
internal combustion engines and Otto 

cycle, 93–96
refrigerators and COP, 91–92

Enthalpy (H), 50, 163, 165
chemical reactions, 167–168
isobaric process, 166–167
state function, 165–166

Entropy (S), 73, 101, 105, 163, 207, 
250–251, 253, 271, 273, 
283–284, 288–289

of black hole, 122–123
calculations, 121
change, 107–110, 116–119, 137–138, 274, 

284, 286–287
Clausius inequality, 101–105
crisis, 144
curves, 295
degradation of energy and heat death, 

142–144
and disorder, 137
entropy–temperature diagrams, 

119–120
frozen-in, 289–290
Gibbs function and, 182–183
of ideal gas, 121–122, 138–142
infinitesimal reversible process, 106
microscopic view of, 133
phase space, 134–135
principle of increasing entropy, 

110–119
reversible cycle, 105
statistical entropy, 135–136
of system, 283
thermodynamic identity, 120–121

Entropy–temperature diagrams, 119–120
Equality, 246
Equations of state, 7
Equilibrium, 272–275
Equilibrium condition, 172

heat reservoir, 174–175
irreversible process, 173
thermal reservoir, 173–174
vacancy formation, 175–176

Equilibrium states, 2, 4, 27, 119, 239–241, 
276–277, 285

isotherms, 6–7
of simple magnetic material, 36
temperature, 5
thermal equilibrium, 4–5
thermodynamic equilibrium, 6
zeroth law of thermodynamics, 4–5

Equipartition, 55–56
theorem, 55, 57–58, 150

Ergodic hypothesis, 135
Exact differential, 339–341
Expansion, 29
Extensible wire, 34
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Extensive quantities, 270–271
Extensive variable, 37
External parameters, 284

F

Face-centered diamond-cubic 
structure, 286

Fermi–Dirac statistics (FD statistics), 
58, 298

application to electron-specific heat 
capacity, 323–324

application to electrons in metals, 318
distribution, 301–302, 304–305

Fermi energy, 277, 319, 321
Fermi level, 277–278
Fermions, 261, 277, 297–298, 327

number density, 319
at T = 0, 319–322
at T > 0, 323

Ferromagnetic class, 256
Ferromagnetic ordering, 292
Final equilibrium state, 274–275
First-order phase change, 244, 254–256
First-order transition, 261

slope of phase boundary in, 293
First law of thermodynamics, 43, 45, 

73; see also Second law of 
thermodynamics; see also 
Third law of thermodynamics

heat, 45–47, 47–49
heat capacity, 48–54
ideal gases and, 58–62
internal energy, 45
Joule–Kelvin effect, 63–64
kinetic theory of gases, 54–58
steady flow process, 65–68
work, 47–49
work of Thompson and Joule, 43–44

Fluids, 239
Force, 19–21

external, 27, 34–35, 64
frictional, 27
Lorentz force, 223–224

Fountain effect, 327
Four-stroke internal combustion 

engine, 94
Free electron theory, 277
Free expansion, 31–32, 58–59

entropy change in, 109–110, 137–138

Frozen-in entropy, 289–290
Fusion curve, 247

G

Gadolinium sulfate, 231, 235
Gamma function, 342
γ-tin, 286
Gas(es), 239, 241; see also Ideal gas(es)

Gas-cylinder system, 20–21
kinetic theory of, 54
mean energy and equipartition, 55–56
molecular speeds, 56
real, 56–57
real gases, 56–57
scale, 10–12
solids, 57–58
system, 51
thermometers, 13

Gaussian distribution, 149–150
Gaussian factor, 341
Gaussian integral, 149
Gauss’s law, 346
Generalization, 271
Gibbs factor, 299–300
Gibbs free energy, 185, 270–271, 275
Gibbs function (G), 163, 177–179, 185–186, 

243–244, 270–272; see also 
Helmholtz function (F)

application to chemical reactions, 
181–182

and entropy, 182–183
in first-order transitions, 250
isobaric section, 250
isothermal section, 252
thermal and mechanical equilibrium, 

179–181
useful work, 184–185
variation of g, 251–252

Glasses, 289–290
Glass phase, 290
Glucose oxidation, 181
Glycerol, 290
Grand partition function, 299–300, 303
Gray tin, 286
Ground state, 288

H

H2O molecules, 239, 267
Hawking, Stephen, 123
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Heat, 45–49, 76; see also Energy; 
Temperature

death, 142–144
engine efficiency, 90–91
engines, 74, 75
flows, 52–53, 274–275
heat-engine cycles, 82
pumps, 92–93
reservoir, 21
source of, 78
specific, 49

Heat capacity, 48, 199, 253, 292–293
constant pressure processes, 49–51
constant volume, 49–51
difference in, 199–201
experimental determination, 52–53
latent heat, 53–54
measurement, 51
method of mixtures, 54
ratio of, 204–207

Heisenberg’s uncertainty principle, 134
Helium, 154, 256

3He atom, 256–257, 297–298, 327
4He atom, 256, 297–298
Helium I, 256
Helium II, 256

Helmholtz function (F), 163, 168–169, 
175, 185–186, 269–270; see also 
Gibbs function (G)

bridge between thermodynamics and 
statistical mechanics, 176–177

equilibrium condition, 172–176
Helmholtz free energy, 269
maximum work from system, 170–172

High-pressure phase, 252
H–O–H bond, 247
Homogeneous region, 239
Hubble’s law, 316–317
Hydrogen bonding, 247
Hypervolume, 135
Hypothetical engine, 83
Hypothetical refrigerator, 80

I

Ice, 239, 246, 267
melting in water, 272
melts, 248
skate, 247–248
volumes of, 247

Ideal gas(es), 109, 130–132, 149, 201–202; 
see also Gas(es)

Carnot cycle for, 74
characteristics, 152–155
CP–CV, 59
energy distribution, 155
entropy, 121–122, 138
equation of adiabat, 60–62
and first law of thermodynamics, 58
free expansion, 58–59
Joule coefficients for, 211
Maxwell’s demon, 155–156
Maxwell speed distribution, 151–152
nonideal gases, 62
one-dimensional gas, 149–151
phase space, 139–140
revisiting entropy of, 207–209
space cells, 138–139
Stirling’s approximation, 140–142

Ideal gas scale, 12, 87
equivalence of, 87–89

Independent systems, 289
Indicator diagram, 6
Inexact differential, 31
Infinitesimal

departure from equilibrium state, 273
process, 111, 280
reversible process, 106, 120

Infrared radiation, 306
Infrared thermometers, 317
Integrals in statistical mechanics, 

341–342
Intensive variable, 37
Internal combustion engines, 73, 93–96
Internal energy (U), 45, 163, 164–165, 

201–202, 203, 268, 277–278
Internal thermodynamic equilibrium, 289
International temperature scale of 1990 

(ITS-90), 13
Inversion curve, 213–214
Inversion temperature (Tin), 213
Iron ammonium alum, 231
Irreversible process, 22, 107, 173
Isenthalp, 213
Isentropic demagnetization, 229
Isobaric process, 166–167
Isothermal

compressibility, 205
compression, 20–22, 241
expansion of ideal gas, 78
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Isothermal (Continued)
magnetizations, 295
path, 241
process, 91, 119, 290

Isotherms, 6–7, 242
portions of, 243

ITS-90, see International temperature 
scale of 1990

J

Joule coefficients, 59, 209
for free expansion, 209–211
for ideal gas, 211
for real gas, 211–212

Joule, James, 44, 59
work of, 43–44

Joule–Kelvin coefficients, 64, 209
Linde liquefaction process, 217–218
for throttling process, 212–217

Joule–Kelvin effect, 63–64
Junction diodes, 278

K

Kelvin (K), 12, 76
Kelvin–Planck statement, 77–79
Kelvin statement

equivalence of Clausius statement 
and, 81–82

of second law, 103
of second law, 79

Kinetic theory of gases, 54
mean energy and equipartition, 55–56
molecular speeds, 56
real gases, 56–57
solids, 57–58

Kirchhoff law, 317–318

L

Lambda point, 257, 327
Larger systems, 132–133
Laser cooling of atomic gases, 295
Latent heat, 53–54, 246

of vaporization, 249
Lattice

positions, 288–289
temperatures, 295
vibrational entropy, 289

Linde liquefaction process, 217–218

Linear coefficient of thermal 
expansion, 22

Liquid(s), 22, 239, 241, 246, 289–290
helium, 250
phase, 251
state, 277

Liquid–vapor region, 242
Lorentz force, 223–224
Lower-energy quantum states, 261
Low temperature properties, 288

M

Macroscopic systems, 288
Macroscopic variable, 285
Macrostate system, 131, 135
Magnetic cooling, 228

adiabatic demagnetization, 229–230
demagnetizing, 231–232
entropy, 230–231
theory, 228
thermodynamics of, 228–229, 232–235

Magnetic field, 254–256, 289
Magnetic ion, 231
Magnetic materials, 343, 344

Curie law, 226–227
electromagnetism, 223–224
and susceptibility, 224–226
thermodynamics of, 223, 227–228

Magnetic moment, 292
temperature dependence of, 291–292

Magnetic salt, 291–292
Magnetic susceptibility (χm), 225
Magnetic systems, 223

magnetic cooling, 228–235
thermodynamics of magnetic 

materials, 223–228
Magnetic work, 343–345
Magnetizable material, 36
Magnetization, 343, 344
Magnetostriction, 227
Mass susceptibility, 225–226
Maximum inversion temperature 

(Tin
max), 213

Maxwel–Boltzmann statistics (MB 
statistics), 298

MB distribution, 304–305
Maxwell–Boltzmann statistics, 144

Boltzmann factor and probability, 
144–147
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examples, 147–148
Maxwell–Jüttner distribution, 155
Maxwell relations, 164, 166, 179, 191–194, 

202–203, 228, 253, 258, 290, 291
Maxwell’s demon, 155–156
MB statistics, see Maxwel–Boltzmann 

statistics
Mean energy, 55–56
Mechanical equilibrium, 6, 179–181, 274
Mechanical equivalent of heat, 44
Mechanical interaction, 3
Melting, 243

point of ice, 248–249
water, 247–248

Metals, 292
application to electron-specific heat 

capacity, 323–324
energy, 278
FD statistics application to electrons 

in, 318
fermions at T = 0, 319–322
fermions at T > 0, 323

Metastable equilibrium, 285, 286
Metastable state, 286
Method of mixtures, 43, 54
Microkelvin, 295
Microscopic view of entropy, 133–144

degradation of energy and heat death, 
142–144

entropy and disorder, 137
entropy change in free expansion, 

137–138
entropy of ideal gas, 138–142
phase space, 134–135
statistical entropy, 135–136

Microstate system, 131, 135
Moduli of elasticity, 24
Molar entropy of gas, 122
Molar heat capacity, 226, 328
Molecular energy, 149
Molecular speeds, 56
Monoclinic phase, 286–287
Monoclinic sulfur, 286
Multiplicity, 130–132

N

Nanokelvin temperatures, 295
Natural variables, 164
Negative slope, 250–251

Nernst formulation of third law, 284–285, 
290, 291

Nernst heat theorem, 283–284
Nernst statement of third law, 292, 

294, 295
Net electron magnetic moment, 289
Net entropy changes, 112
Net magnetic moment, 256
Newton’s laws, 121
Niobium, 256
N-molecule gas, 132, 133
Non-SI system, 53
Nondegenerate, 301
Nonideal gases, 62
Nonzero entropy, 287
Normal conductor, 256
Normal phase, 256
Nuclear antiferromagnet, 295
Nuclear fusion research, 242
Nuclear spin

entropy, 289
system, 289

Number space, 320
Numerical values, 8

O

Open systems, 267
Orientations of electron spins, 289
Osmosis, 277
Osmotic pressure, 276–277
Otto cycle, 93–96
Oxygen, 154

P

Paramagnet, 256
Paramagnetic class, 256
Paramagnetic salts, 206, 231
(∂CV/∂V)T and (∂CP/∂P)T, evaluation of, 

201–203
Particle densities, 260
Partition, 1

function, 146
Pascal’s triangle, 132
Path independent integral, 27, 106, 340
Pauli exclusion principle, 277, 298, 

299, 325
Perfect crystal, 285, 288–289
Permanent magnetic moment, 256
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Perpetual-motion machine, 77
Perpetuum mobile, 77, 80
Persistent flow, 260
Phase boundary, 246, 248, 251, 255, 

258, 267
Clausius–Clapeyron equation for, 257
in first-order transition, 293

Phase changes
Clausius–Clapeyron equation for first-

order phase changes, 244
development of Clausius–Clapeyron 

equation, 244–247
of different orders, 254
Ehrenfest equations for second-order 

phase changes, 257–260
equation of vapor pressure curve, 

249–250
equilibrium condition for two phases, 

243–244
first-order phase changes, 254–256
Gibbs function G in first-order 

transitions, 250–252
melting point of ice and boiling point 

of water, 248–249
melting water and winter sports, 

247–248
and phases, 241–242
PVT surfaces, 239
second-order phase changes, 253, 

256–257
superconductivity and superfluidity, 

260–262
two-dimensional representations, 

242–243
Phase space, 134–135
Phase transformations, 53–54
Photons, 305; see also Energy; Heat

analysis of spectral energy and Wien 
law, 314–315

applications, 315–317
energy density for cavity radiation, 

308–311
experimental determination, 311–313
gas, 307
Kirchhoff law, 317–318
radiation density and pressure, 305–308
spectral distribution, 313–314
Stefan–Boltzmann law, 311–313
thermodynamic derivation of Stefan–

Boltzmann law, 313

Photosynthesis, 182
Physical constants, values of, 335
Planck formulation of third law, 

284–285, 286–287
Planck radiation law, 314
Planck’s constant (h), 123, 142, 309
Planck statement of third law, 

285–288
Plasma, 242
Polonium, 172
Pressure, 239, 241

difference, 276
gauge, 250

Principle of increasing entropy, 110
development of, 110–112
entropy and arrow of time, 115–116
entropy change for universe, 116–119
entropy changes, 113
entropy of thermally isolated 

system, 112
system exchanges heat with set of 

local reservoirs, 114
Probability, 129

ideal gases and multiplicity, 130–132
larger systems, 132–133

Projections, 243
Property of spin, 261
PT

graph, 243
projection, 246–247, 248
representation, 243

PV
diagram, 6, 21, 31, 93, 119
representation, 243

PVT surfaces, 239
equilibrium condition for two phases, 

243–244
and phases, 241–242
two-dimensional representations, 

242–243
PVT system, 175, 223, 228

Q

Quantum distributions, 298–299
Quantum effects, 260
Quantum energy of rotational state, 57
Quantum mechanics, 116, 260, 288

wave functions, 260
Quantum statistics
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application of FD statistics to 
electrons in metals, 318–324

BE condensation, 324–328
classical and, 297–305
photons and thermal radiation, 305–318

Quantum systems, 285
Quasistatic process, 20

R

Radiation density and pressure, 305–308
87Rb isotope, 328
Real engine, 90
Real gases, 56–57

Joule coefficients for, 211–212
Real steam engines, 90
Reciprocal relations, 337–338
Refrigerators, 90

and COP, 91–92
efficiency of heat engine, 90–91
heat pumps, 92–93
internal combustion engines and Otto 

cycle, 93–96
Relaxation method, 207
Reservoir, 21
Reversible addition, 277–278
Reversible adiabat, 61
Reversible adiabatic process, 119
Reversible cycle, 105
Reversible electrolytic cell, 35
Reversible heating process, 107
Reversible isochoric process, 165
Reversible processes, 19, 88, 105, 107, 120

bulk modulus, 24
as continuous line on PV diagram, 21
infinitesimal work in, 37
isothermal compression, 20–22
pendulum, 20
effect of temperature on tension in 

wire, 24–27
thermal expansion, 22–24
work calculation in, 38–39
work in, 27–31

Rhombohedral sulfur, 286, 287
Root-mean-square speed, 56

S

Sackur–Tetrode equation, 142
Saturated liquid, 241

Saturated vapor, 241
Saturation vapor pressure, 249–250
Schottky temperature dependence of 

heat capacity, 234
Schrödinger equation, 319
Second law of thermodynamics, 

73; see also First law of 
thermodynamics; see also Third 
law of thermodynamics

Carnot cycles, 73–74
Carnot’s theorem, 82–85
Clausius statement, 80–81
efficiency of engine, 74–76
engines and refrigerators, 90–96
equivalence of Kelvin and Clausius 

statements, 81–82
Kelvin–Planck statement, 77–79
statements of, 76
thermodynamic temperature scale, 

85–89
Second mean-value theorem of integral 

calculus, 39
Second-order phase changes, 253, 

256–257
Ehrenfest equations for, 257–260

Second-order transition, 261
Second sound, 327
Semiconductors, 278
Semipermeable membrane, 276
Shorthand notation, 131
σ-tin, 286
Sign convention for work, 32–33
Simon formulation of third law, 288–290
Simon statement, 289
Single-fixed-point scale, 16
Single-phase liquid region, 241
Single-point temperature scale, 13–16
Single component, see Single substance
Single solid-phase region, 241
Single substance, 243
Single vapor-phase, 241
Skiing, 248
Snowboarding, 248
Solid(s), 22, 57–58 239

phase, 251
solid–liquid phase boundary, 250
solid–liquid transition, 261

Specific heat, 49
Spectral absorptivity of surface, 308
Spectral distribution, 313–314
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Spectral emissivity of surface, 308
Spectral energy; see also Energy

analysis of, 314–315
density, 308

Stable equilibrium, 285, 286
Stable rhombohedral form, 286
State functions (S), 3, 106
Statements of third law, 283

experimental test of third law, 285–287
microscopic view of third law, 288
Nernst heat theorem, 283–284
Planck formulation of third law, 

284–285
Simon formulation of third law, 

288–290
State property, 3
State space, 134
State variables, 2, 3, 135, 239–241
Statistical mechanics, 116, 129

bridge between thermodynamics and, 
176–177

ideal gases, 149–156
integrals in, 341–342
Maxwell–Boltzmann statistics, 144–148
microscopic view of entropy, 133–144
probability and statistics, 129–133

Statistics, 129–133
ideal gases and multiplicity, 130–132
larger systems, 132–133
statistical description of system, 135
statistical entropy, 135–136
statistical partition function, 269
statistical thermodynamics, 129

Steady flow process, 65
flow through nozzle, 67–68
parameters in steady flow device, 65
turbine, 66–67

Steam, 239
engine, 73

Stefan–Boltzmann law, 311–313, 317
thermodynamic derivation, 313

Stirling’s approximation, 140–142
Stoichiometric coefficients, 279–280
Sublimation, 243
Sulfur, 286

monoclinic, 286
rhombohedral, 286, 287

Superconducting phases, 254–255, 293
Superconductivity, 260–262
Superconductor, 255

transition of, 256
Superfluid, 327

liquid, 256
phase, 256

Superfluidity, 260–262
Surface film, 34–35
Surroundings, 1
System, 1

biological, 277
composite, 54, 103
entropy of, 283
gas, 51
independent, 289
larger systems, 132–133
macroscopic, 288
macrostate, 131, 135
magnetic, 291–292
microstate, 131, 135
non-SI, 53
nuclear spin, 289
open, 267
PVT, 175, 223, 228
quantum, 285
temperature of, 5
thermally isolated, 111, 112, 273
thermodynamic, 4, 119
uncoupled, 289
variable-mass, 267–268
walls and surroundings, 1

T

Taylor’s theorem, 245, 258
Temperature, 1, 76, 121, 239, 242, 254, 

275, 283, 288, 289; see also Heat
absolute thermodynamic temperature 

scale, 8–9
adiathermal and diathermal walls, 3–4
Celsius scale, 13
dependence of magnetic moment, 

291–292
equations of state, 7
equilibrium state, 4–7
gas scale, 10–12
ITS-90, 13
limitations of thermodynamic scale, 10
phase, 251
scale from Carnot engines, 85–87
scales, 8
single-point temperature scale, 13–16
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state functions, 3
system, walls and surroundings, 1

Tension in wire, temperature effect on, 
24–27

Tetragonal crystal structure, 286
Theoretical model, 325–327
Thermal contact, 4
Thermal energy, 242, 291
Thermal equilibrium, 4–5, 179–181, 274
Thermal expansion coefficient, 290–291
Thermal interaction, 4, 22–24, 291
Thermally isolated system, 111, 112, 273
Thermal radiation, 305

analysis of spectral energy and Wien 
law, 314–315

applications, 315–317
energy density for cavity radiation, 

308–311
experimental determination, 311–313
Kirchhoff law, 317–318
radiation density and pressure, 305–308
spectral distribution, 313–314
Stefan–Boltzmann law, 311–313

Thermal reservoir, 21
Thermodynamic(s), 1, 19, 101, 129, 243

bridge between statistical mechanics 
and, 176–177

chain rule, 338–339
coordinates, 2
Curie law, 226–227
electromagnetism, 223–224
entropy, 136
equilibrium, 6, 243
exact differential, 339–341
identities, 120–121, 190–191, 203, 245, 

267–268
integrals in statistical mechanics, 

341–342
of magnetic cooling, 232–235
of magnetic materials, 223
magnetic materials and susceptibility, 

224–226
mathematical relations in, 337
processes, 116
reciprocal and cyclical relations, 

337–338
relations for magnetic materials, 

227–228
state of system, 119
Stefan–Boltzmann law, 313

universe, 115
variables, 2

Thermodynamic potentials, 
163–164, 270

availability function, 186–190
enthalpy, 165–168
example using Maxwell relation, 

192–194
Gibbs function, 177–186
Helmholtz function, 168–177
internal energy, 164–165
thermodynamic square, 190–192

Thermodynamic relations
difference in heat capacities, 199–201
energy equation, 203–204
evaluation of (∂CV/∂V)T and (∂CP/∂P)T, 

201–203
Joule and Joule–Kelvin coefficients, 

209–218
ratio of heat capacities, 204–207
revisiting entropy of ideal gas, 207–209

Thermodynamic scale
equivalence of, 87–89
limitations of, 10

Thermodynamic square, 190, 191
Maxwell relations, 191–192
thermodynamic identities, 190–191

Thermodynamic temperature scale, 73, 
85–89

equivalence of thermodynamic and 
ideal gas scales, 87–89

temperature scale from Carnot 
engines, 85–87

Thermomechanical effect, 327
Thermometers, numbers on, 8
Thermometric property, 8
Thermometric variable, 8
Third law of thermodynamics, 

283; see also First law of 
thermodynamics; Second law of 
thermodynamics

consequences, 290
experimental test, 285–287
heat capacity, 292–293
microscopic view, 288
Nernst heat theorem, 283–284
Planck formulation, 284–285
Simon formulation, 288–290
slope of phase boundary in first-order 

transition, 293
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Third law of thermodynamics (Continued)
statements, 283
temperature dependence of magnetic 

moment, 291–292
thermal expansion coefficient, 290–291
unattainability of absolute zero, 

293–295
Thompson, Benjamin, 43

work of, 43–44
Three-dimensional motion, 134
Throttling process, 63, 65

cyclical rule, 215
equilibrium state, 212–213
gases, 216–217
inversion curve, 213–214
Joule–Kelvin coefficients for, 212

TP, see Triple point
Transition, 256

temperatures, 256
Translational energy of gas molecule, 55
Triple line, 242
Triple point (TP), 16, 243

of water, 8–9
Turbine, 66–67
Two-phase

liquid–vapor region, 241
solid–vapor phase, 242
solid–vapor region, 242

U

Ultraviolet catastrophe, 309
Uncoupled systems, 289
Universal gravitation constant (G), 123
Universe, entropy change for, 116–119

V

Vapor-only phase, 242
Vapor, 241, 246

equation of vapor pressure curve, 
249–250

Vaporization
curves, 243
latent heat of, 249

Vapor pressure, 246
curve, 249–250

Variable-mass system, 267–268
Vector quantities, 343
Virial coefficients, 211

Virial expansion, 211
Virial theorem in classical mechanics, 58
Volume, 121, 241, 253

coefficient of thermal expansion, 23

W

Water, 239, 246
entropy change in, 107–108
vapor, 154
volumes of, 247

White tin, 286
Wien law, 316, 317

analysis of, 314–315
Wilkinson Microwave Anisotropy Probe 

(WMAP), 317
Winter sports, 247–248
WMAP, see Wilkinson Microwave 

Anisotropy Probe
Work, 27, 47–49

calculation in reversible process, 
38–39

dielectric, 345–347
dielectric material, 36–37
dissipative, 33–34
extensible wire, 34
free expansion, 31–32
function, 277
magnetic, 343–345
reversible electrolytic cell, 35
in reversible processes, 27–31
sign convention for, 32–33
simple magnetizable material, 36
surface film, 34–35
of Thompson and Joule, 43–44

Y

Young’s modulus, 24

Z

Zero entropy, 289–290
Zero spin, 261

entropy, 289
Zeroth law of thermodynamics, 

1, 4–5; see also First law of 
thermodynamics; Second law of 
thermodynamics; Third law of 
thermodynamics
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