
BAGIAN IV PEGAS

Pegas adalah sebuah elemen mesin elastis yang berfungsi untuk mencegah distorsi pada saat pembebanan dan menahan pada posisi semula pada saat posisinya dirubah.

Pegas ulir

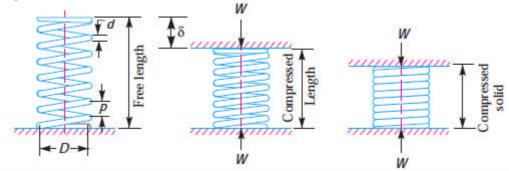
A. Jenis – jenis pegas :

- a. Pegas tekan atau kompresi
- b. Pegas tarik
- c. Pegas Puntir
- d. Pegas Volut
- e. Pegas daun
- f. Pegas piring (plat)
- g. Pegas cincin
- h. Pegas torsi atau batang puntir

Gb.7.1 jenis-jenis pegas

Pegas dapat berfungsi sebagai pelunak tumbukan atau kejutan seperti pegas kendaraan, sebagai penyimpan energi seperti pada jam, untuk pengukur seperti pada timbangan, dll.

B. Bahan pegas


Pegas dapat dibuat dari berbagai jenis bahan sesuai pemakaiannya. Bahan baja dengan penampang lingkaran adalah yang paling banyak dipakai.

Bahan – bahan pegas terlihat pada tabel berikut : Tabel 6.

Material	Allowable shear stress (τ) MPa			Modulus of	Modulus of
	Severe service	Average service	Light service	rigidity (G) kN/m²	elasticity (E) kN/mm ²
Carbon steel					
(a) Upto to 2.125 mm dia.	420	525	651	1	
(b) 2.125 to 4.625 mm	385	483	595		
(c) 4.625 to 8.00 mm	336	420	525		
(d) 8.00 to 13.25 mm	294	364	455		
(e) 13.25 to 24.25 mm	252	315	392	80	210
(f) 24.25 to 38.00 mm	224	280	350		
2. Music wire	392	490	612		
3. Oil tempered wire	336	420	525		
4. Hard-drawn spring wire	280	350	437.5		
Stainless-steel wire	280	350	437.5	J 70	196
6. Monel metal	196	245	306	44	105
7. Phosphor bronze	196	245	306	44	105
8. Brass	140	175	219	35	100

Material dari pegas harus memiliki kekuatan fatigue tinggi, ductility tinggi, ketahanan tinggi dan harus tahan creep.

C. Pegas helik (tekan / tarik)

Gb.7.2 pegas tekan

a. Panjang Rapat (Solid length of the spring);

$$\boldsymbol{L}_{\boldsymbol{s}} = \mathbf{n'} \mathbf{d}$$

Dimana : n' = jumlah koil lilitan

d = diameter kawat

b. Panjang Bebas (Free length of the spring)

$$L_f = n' d + \delta_{\text{mak}} + (n' - 1) \times 1 \text{ mm}$$

Dalam kasus ini, jarak antara dua kumparan yang berdekatan diambil 1 mm.

c. Indek pegas (C) didefinisikan sebagai rasio perbandingan antara diameter pegas dengan diameter kawat, persamaan matematikanya adalah :

Indek pegas (C) =
$$\frac{D}{d}$$

Dimana : D = diameter lilitan / pegas

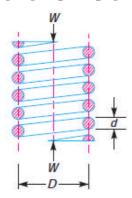
d. Spring rate (**k**) didefinisikan sebagai sebagai beban yang diperlukan per unit defleksi pegas, persamaan matematikanya adalah :

$$k = \frac{W}{\delta}$$

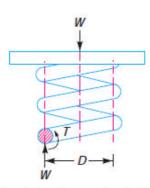
Dimana: W = beban

 δ = Defleksi dari pegas

e. Pitch. didefinisikan sebagai jarak aksial antara kumparan yang berdekatan pada daerah yang tidak terkompresi.


$$Pitch(p) = \frac{panjangbebas}{n'-1}$$

Atau dapat dicari dengan cara:


Pitch of the coil,

$$p = \frac{L_{\rm F} - L_{\rm S}}{n'} + d$$

f. Tegangan pada pegas helik:

(a) Axially loaded helical spring.

(b) Free body diagram showing that wire is subjected to torsional shear and a direct shear.

D = Mean diameter of the spring coil,

d =Diameter of the spring wire,

n =Number of active coils,

G = Modulus of rigidity for the spring material,

W = Axial load on the spring,

 τ = Maximum shear stress induced in the wire,

C = Spring index = D/d,

p = Pitch of the coils, and

 δ = Deflection of the spring, as a result of an axial load W.

Bila tarikan atau kompresi bekerja pada pegas ulir, besarnya momen puntir T (kg.mm) adalah tetap untuk seluruh penampang kawat yang bekerja. Untuk diameter lilitan rata-rata (diukur pada sumbu kawat) D (mm), berdasarkan kesetimbangan momen besar momen puntir tersebut adalah :

$$T = W. \frac{D}{2}$$

Jika diameter kawat adalah d(mm), maka besarnya momen puntir kawat yang berkorelasi dengan tegangan geser akibat torsi τ_1 (kg/mm²) dapat dihitung dari :

Torsi =
$$\tau_1 \times \frac{\pi}{16} \cdot d^3$$

Sehingga,

$$\tau_1 = \frac{16}{\pi d^3} x \frac{DW}{2}$$

$$\mathbf{\tau_1} = \frac{8WD}{\pi d^3}$$

Sedangkan tegangan geser langsung akibat beban W adalah:

$$\tau_2 = \frac{\text{Load}}{\text{Cross-sectional area of the wire}}$$
$$= \frac{W}{\frac{\pi}{4} \times d^2} = \frac{4W}{\pi d^2}$$

Sehingga, tegangan geser maksimum yang terjadi di permukaan dalam lilitan pegas ulir adalah :

$$\tau = \tau_1 \pm \tau_2 = \frac{8W.D}{\pi d^3} \pm \frac{4W}{\pi d^2}$$

= Torsional shear stress + Direct shear stress

$$= \frac{8W.D}{\pi d^3} + \frac{4W}{\pi d^2} = \frac{8W.D}{\pi d^3} \left(1 + \frac{d}{2D} \right)$$

$$= \frac{8 W.D}{\pi d^3} \left(1 + \frac{1}{2C} \right) = K_S \times \frac{8 W.D}{\pi d^3}$$

$$K_{\rm S}$$
 = Shear stress factor = 1 + $\frac{1}{2C}$

(tegangan hanya mempertimbangkan pembebanan langsung)

$$\tau = \frac{K8WD}{\pi d^3} = \frac{K8WC}{\pi d^2}$$

(tegangan dengan mempertimbangkan efek lengkungan dan pembebanan)

D = diameter pegas rata-rata

d = diameter of the spring wire

n = jumlah lilitan aktif

G = modulus kekakuan

W = Beban aksial

C =Spring index = D/d

 τ = tegangan geser

K = faktor Wah'l

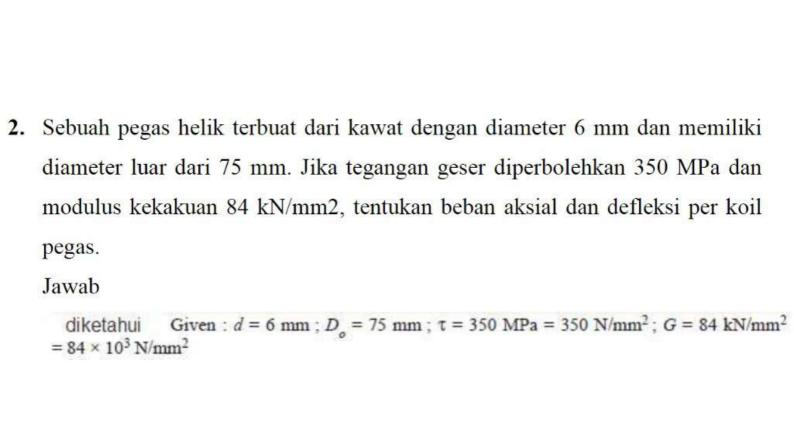
$$K = \frac{4C+1}{4C-4} + \frac{0,615}{C}$$

Defleksi pegas:

$$\delta = \frac{8WD^3n}{d^4G} = \frac{8WC^3n}{dG}$$

Contoh Permasalahan:

 Sebuah kumparan pegas kompresi yang terbuat dari baja paduan adalah memiliki spesifikasi sebagai berikut:


diameter koil = 50 mm; diameter kawat = 5 mm; Jumlah koil aktif = 20.

Jika spring dikenakan ke beban aksial dari 500 N; hitung tegangan geser maksimum (abaikan pengaruh kelengkungan).

Jawab:

Diketahui

D = 50 mm; d = 5 mm; *n = 20; W = 500 N

3. Rancanglah pegas yang digunakan untuk mengukur beban 0 sampai 1000 N, dimana defleksi pegas 80 mm. Pegas akan dimasukkan ke dalam casing berukuran diameter 25 mm. Perkiraan jumlah koil adalah 30. Modulus kekakuan adalah 85 kN/mm². Hitunglah juga tegangan geser maksimum.

Jawab:

Diketahui:

W = 1000 N; $\delta = 80 \text{ mm}$; n = 30; $G = 85 \text{ kN/mm}^2 = 85 \times 10^3 \text{ N/mm}^2$