
PERTERMUAN KE 11

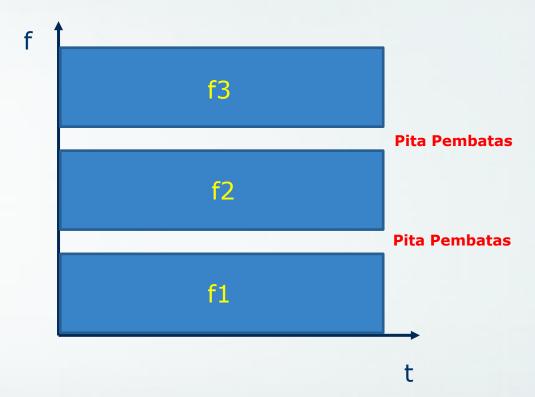
- MULTIPLEXING
- FDM
- TDM
- CDM
- WDM

MULTIPLEXING (PENGGABUNGAN)

Multiplexing berawal dari:

Ide multiplexing muncul berawal dari adanya keterbatasan akan sumber daya yang dimiliki oleh sistem. Sehingga dilakukan penggabungan paket agar dapat menghemat perangkat dan saluran. Pada proses pengabungan paket disebut *Multiplexing*. Alat penggabungnya disebut *Multiplexer*, pada sisi terima terjadi proses *Demultiplexing*, untuk menguraikan sinyal informasi, dari kanal komunikasi.

Teknik Multiplexing


- 1 Frequensi Division Multiplexing (FDM)
- 2 Time Division Multiplexing (TDM)
- 3 Code Division Multiplexing (CDM)
- 4 Wavelength Division Multiplexing (WDM)

Frequensi Division Multiplexing (FDM)

Adalah suatu Teknik penggunaan bandwith dari kanal komunikasi secara bersama-sama, berdasarkan pembagian frekuensi.

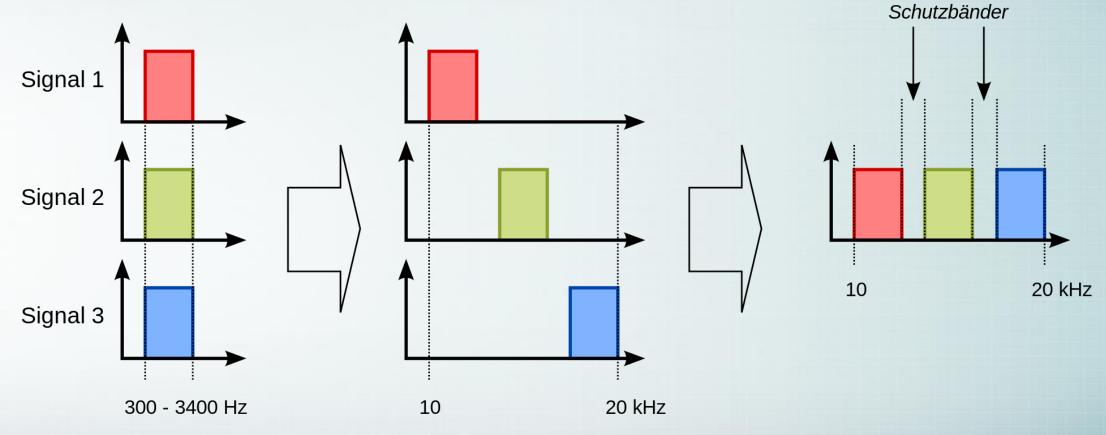
Sehingga sinyal informasi dari berbagai sumber dialokasikan dengan pita frekuensi yang berbeda .

Frequensi Division Multiplexing (FDM)

Gambar 11.2 pembagian pita frekuensi pada FDM

$$B = n_f f_c + (n_f - 1) f_b$$

Dimana:


B = Bandwith kanal komunikasi

 f_c = Pita frekuensi

 f_b = Pita pembatas

 n_f = Banyaknya pita frekuensi

Frequensi Division Multiplexing (FDM)

Gambar 11.3 Simulasi pembagian pita frekuensi pada FDM

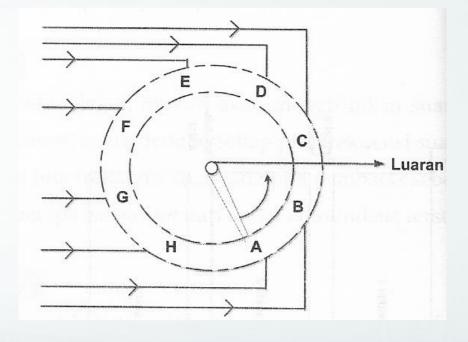
Kelebihan dan Kekurangan FDM

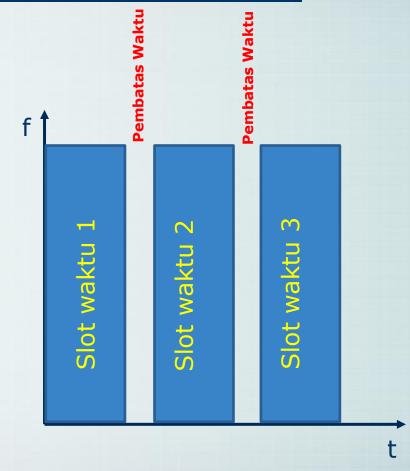
Kelebihan FDM

- ✓ Beberapa sinyal informasi dapat dikirimkan secara serentak pada kanal komunikasi
- ✓ Demodulasi dari proses FDM sangat mudah
- ✓ FDM tidak membutuhkan sinkronisasi antar pemancar dan penerima

Kekurangan FDM

- ✓ Kanal komunikasi harus mempunyai bandwith yang sangat besar, untuk menyalurkan sinyal informasi
- Dimungkinkan terjadi distorsi akibat antar modulasi
- ✓ Diperlukan modulator dan filter yang banyak


Time Division Multiplexing (TDM)


Adalah suatu Teknik penggunaan bandwith dari kanal komunikasi secara bersama-sama, berdasarkan pembagian waktu.

Semua sinyal informasi yang akan dimultipleks, memiliki frekuensi yang sama, tetapi dibedakan dengan waktu.

Time Division Multiplexing (TDM)

Proses TDM

Gambar 11.5 pembagian pita frekuensi pada TDM

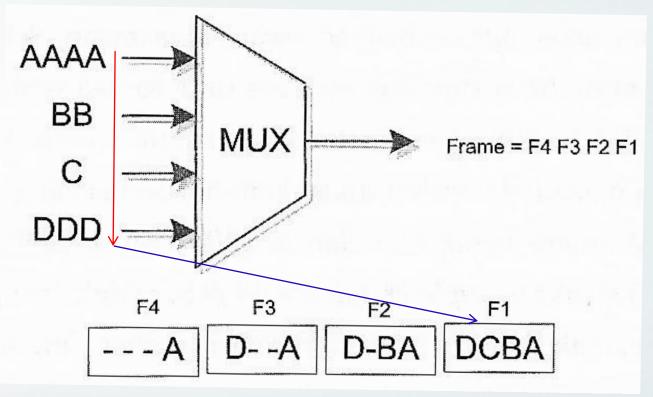
Gambar 11.4 Simulasi proses TDM

Diagram

TDM

Synchronous TDM

Synchronous TDM artinya setiap sinyal informasi dari sumber pada masukan menempati slot waktu yang tersendiri, pada satu frame sebelum ditransmisikan ke kanal komunikasi.


Asynchronous TDM

Asynchronous TDM artinya Slot waktu yang digunakan untuk ditempati oleh sinyal informasi bersifat dinamis

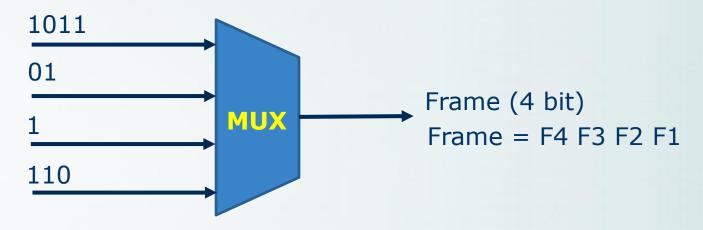
Synchronous TDM

Prinsip kerja Synchronous TDM adalah setiap sumber akan menempatkan data ke rangkaian mux, hanya Ketika slot yang sesuai tiba. Apabila sumber tidak memiliki sinyal informasi yang dikirimkan, maka slot waktu yang sesuai akan dibiarkan tetap kosong.

Synchronous TDM

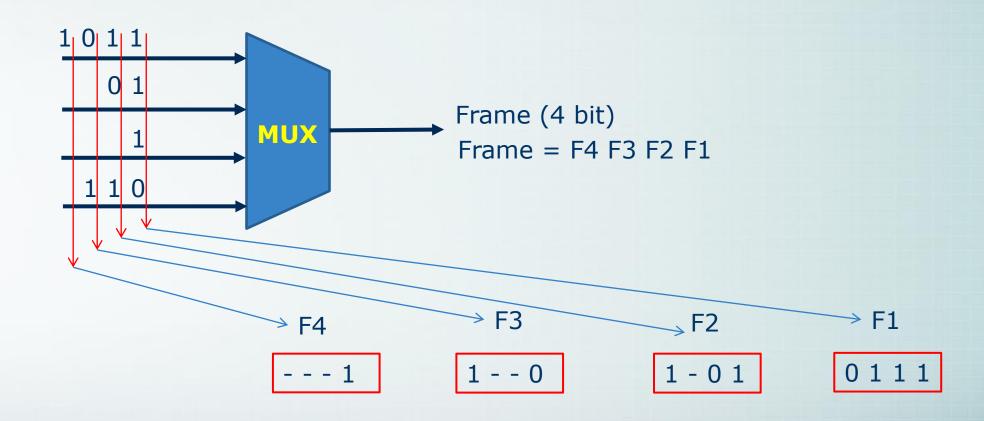
- Pada F1 diisi oleh A1,B1,C1,D1
- Pada F2 diisi oleh A2,B2,..,D2
- Pada F3 diisi oleh A3,...,...,D3
- Pada F4 diisi oleh A4,..,...
- dst

Gambar 11.6 Synchonous TDM


Kelemahan Synchronous TDM

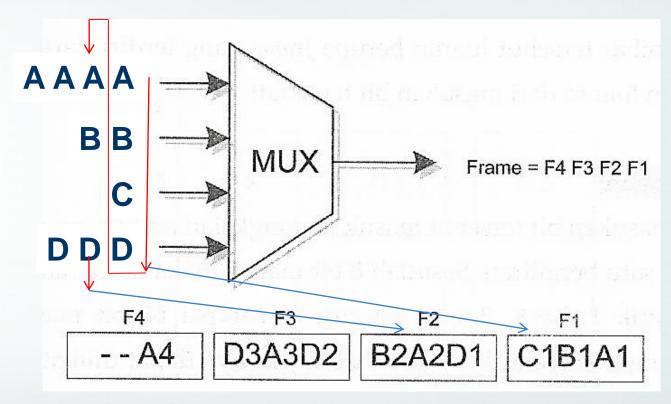
- Kapasitas kanal komunikasi tidak dapat digunakan secara penuh, apabila sumber yang menjadi masukan rangkaian MUX tidak mengirimkan sinyal informasi
- Kapasitas kanal komunikasi harus lebih tinggi dari seluruh kapasitas sumber
- Teknik ini sulit diterapkan

Contoh Soal


Sebuah sistem TDM dengan 4 masukan seperti pada gambar dibawah ini

Gambar 11.7 Synchonous TDM

Dari gambar tersebut keluaran, berupa frame yang terdiri dari 4 bit. Tentukan keluaran dari masukan tersebut.

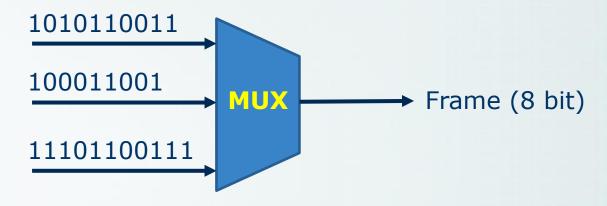

Jawab

Asynchronous TDM

Prinsip kerja Asynchronous TDM adalah slot waktu pada satu frame, tidak ditempati secara khusus oleh sumber tertentu. Melainkan bisa ditempati oleh sumber lain.

Asynchronous TDM

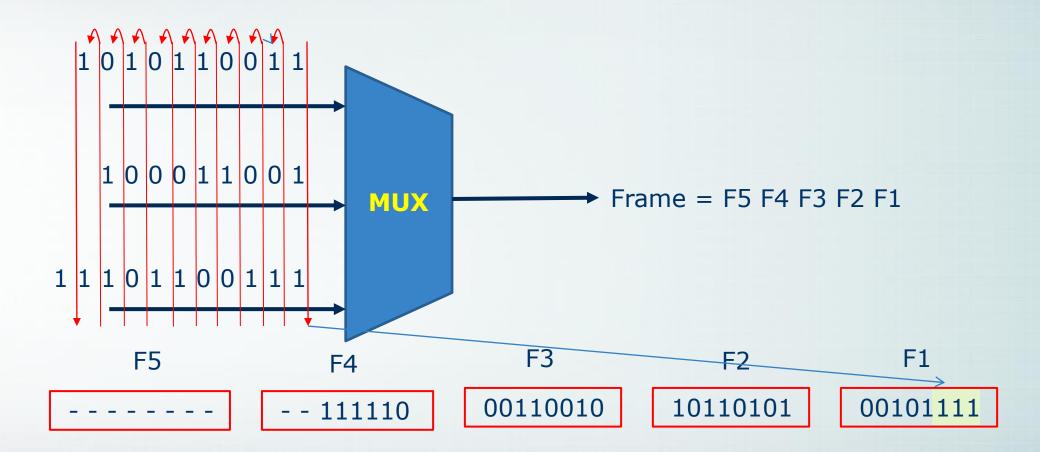
Gambar 11.8 Asynchonous TDM


- Pada F1 diisi oleh A1,B1,C1
- Pada F2 diisi oleh D1,A2,B2
- Pada F3 diisi oleh D2,A3,D3
- Pada F4 diisi oleh A4
- dst

Kelemahan Asynchronous TDM

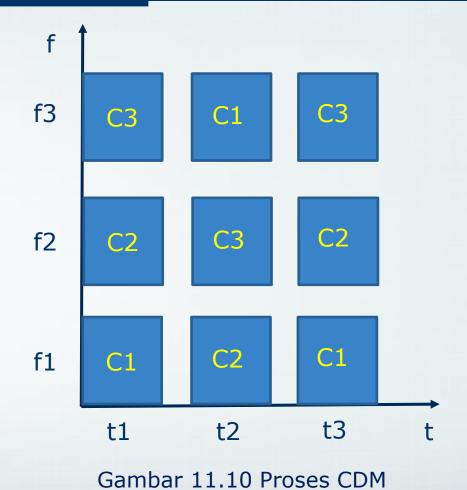
- Tiap frame memiliki ukuran yang berbeda
- Memerlukan buffer, karena jumlah slot waktu lebih sedikit, dari jumlah sumber sinyal informasi
- Memerlukan informasi alamat, karena slot waktu pada satu frame tidak ditentukan secara khusus, untuk melayani sumber yang sudah ditentukan

Contoh Soal


Sebuah sistem TDM dengan 3 masukan seperti pada gambar dibawah ini

Gambar 11.9 Asynchonous TDM

Dari gambar tersebut keluaran, berupa frame yang terdiri dari 8 bit. Tentukan keluaran dari masukan tersebut.


Jawab

Code Division Multiplexing (CDM)

Bentuk multiplexing dimana pemancar mengkodekan sinyal informasi, dengan menggunakan kode pseudonoise unik, yang dihasilkan oleh generator urutan psudorandom.

Code Division Multiplexing (CDM)

Penempatan berdasarkan generator urutan psudorandom :

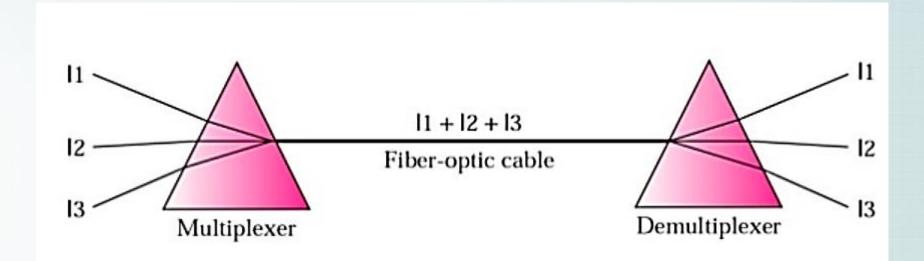
- Urutan waktu pertama (t1) adalah: C1, C2, C3
- Urutan waktu kedua (t2) adalah: C2, C3, C1
- Urutan waktu ketiga (t3) adalah: C1, C2, C3
- dst

Kelebihan dan Kekurangan CDM

Kelebihan CDM

- ✓ CDM Tidak memerlukan sinkronisasi
- ✓ Dapat melayani lebih banyak sumber dan menggunakan bandwith yang sama
- ✓ Diterapkan pada sistem seluler
- ✓ Interferensi dapat dikurangi karena setiap sumber menggunakan kode yang berbeda
- ✓ Efisien terhadap gangguan bandwith

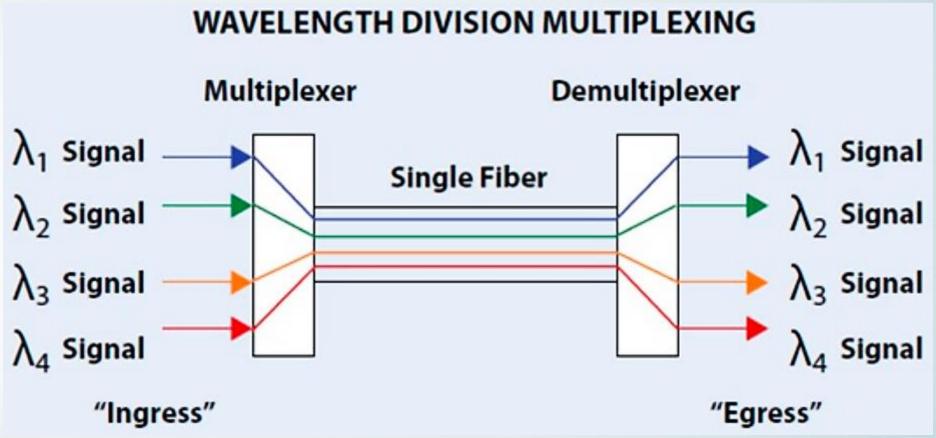
Kekurangan CDM


- ✓ Sistem yang lebih rumit dibandingkan FDM dan TDM
- ✓ Apabila jumlah sumber bertambah, maka kualitas layanan menjadi menurun

Wavelength Division Multiplexing (WDM)

Digunakan pada komunikasi serat optik. Sinyal informasi dari sumber dirubah menjadi cahaya, setiap cahaya memiliki panjang gelombang yang berbeda-beda.

Selanjutnya dari cahaya yang memiliki panjang gelombang yang berbeda-beda tersebut, ditransmisikan ke kanal komunikasi, berupa kabel serat optik.


Wavelength Division Multiplexing (WDM)

sinyal informasi yang berbeda pada satu <u>serat optik</u> dengan menggunakan panjang gelombang (<u>warna</u>) cahaya <u>laser</u> yang berbeda

Gambar 11.11 Proses WDM

Wavelength Division Multiplexing (WDM)

Gambar 11.12 Simulasi Proses WDM

Kelebihan dan Kekurangan WDM

Kelebihan WDM

- ✓ Dapat dilakukan transmisi full duplex
- ✓ Komponen optik lebih dapat dihandalkan dan memberikan bandwith yang lebih tinggi
- ✓ Memberikan tingkat keamanan yang tinggi dan akses lebih cepat ke saluran baru
- ✓ perluasan sistem mudah
- ✓ Transmisi serentak untuk berbagai sinyal informasi

Kekurangan WDM

- ✓ Harus memiliki laser khusus panjang gelombang
- ✓ Biaya sistem meningkat dengan penambahan komponen optik
- ✓ Pemanfaatan bandwith yang tidak efisien
- ✓ Kesulitan dalam penyetelan panjang gelombang dan topologi bertingkat

